924 resultados para Graph operations
Resumo:
Early psychiatry investigated dreams to understand psychopathologies. Contemporary psychiatry, which neglects dreams, has been criticized for lack of objectivity. In search of quantitative insight into the structure of psychotic speech, we investigated speech graph attributes (SGA) in patients with schizophrenia, bipolar disorder type I, and non-psychotic controls as they reported waking and dream contents. Schizophrenic subjects spoke with reduced connectivity, in tight correlation with negative and cognitive symptoms measured by standard psychometric scales. Bipolar and control subjects were undistinguishable by waking reports, but in dream reports bipolar subjects showed significantly less connectivity. Dream-related SGA outperformed psychometric scores or waking-related data for group sorting. Altogether, the results indicate that online and offline processing, the two most fundamental modes of brain operation, produce nearly opposite effects on recollections: While dreaming exposes differences in the mnemonic records across individuals, waking dampens distinctions. The results also demonstrate the feasibility of the differential diagnosis of psychosis based on the analysis of dream graphs, pointing to a fast, low-cost and language-invariant tool for psychiatric diagnosis and the objective search for biomarkers. The Freudian notion that ‘‘dreams are the royal road to the unconscious’’ is clinically useful, after all.
Resumo:
Early psychiatry investigated dreams to understand psychopathologies. Contemporary psychiatry, which neglects dreams, has been criticized for lack of objectivity. In search of quantitative insight into the structure of psychotic speech, we investigated speech graph attributes (SGA) in patients with schizophrenia, bipolar disorder type I, and non-psychotic controls as they reported waking and dream contents. Schizophrenic subjects spoke with reduced connectivity, in tight correlation with negative and cognitive symptoms measured by standard psychometric scales. Bipolar and control subjects were undistinguishable by waking reports, but in dream reports bipolar subjects showed significantly less connectivity. Dream-related SGA outperformed psychometric scores or waking-related data for group sorting. Altogether, the results indicate that online and offline processing, the two most fundamental modes of brain operation, produce nearly opposite effects on recollections: While dreaming exposes differences in the mnemonic records across individuals, waking dampens distinctions. The results also demonstrate the feasibility of the differential diagnosis of psychosis based on the analysis of dream graphs, pointing to a fast, low-cost and language-invariant tool for psychiatric diagnosis and the objective search for biomarkers. The Freudian notion that ‘‘dreams are the royal road to the unconscious’’ is clinically useful, after all.
Resumo:
Verbal fluency is the ability to produce a satisfying sequence of spoken words during a given time interval. The core of verbal fluency lies in the capacity to manage the executive aspects of language. The standard scores of the semantic verbal fluency test are broadly used in the neuropsychological assessment of the elderly, and different analytical methods are likely to extract even more information from the data generated in this test. Graph theory, a mathematical approach to analyze relations between items, represents a promising tool to understand a variety of neuropsychological states. This study reports a graph analysis of data generated by the semantic verbal fluency test by cognitively healthy elderly (NC), patients with Mild Cognitive Impairment – subtypes amnestic(aMCI) and amnestic multiple domain (a+mdMCI) - and patients with Alzheimer’s disease (AD). Sequences of words were represented as a speech graph in which every word corresponded to a node and temporal links between words were represented by directed edges. To characterize the structure of the data we calculated 13 speech graph attributes (SGAs). The individuals were compared when divided in three (NC – MCI – AD) and four (NC – aMCI – a+mdMCI – AD) groups. When the three groups were compared, significant differences were found in the standard measure of correct words produced, and three SGA: diameter, average shortest path, and network density. SGA sorted the elderly groups with good specificity and sensitivity. When the four groups were compared, the groups differed significantly in network density, except between the two MCI subtypes and NC and aMCI. The diameter of the network and the average shortest path were significantly different between the NC and AD, and between aMCI and AD. SGA sorted the elderly in their groups with good specificity and sensitivity, performing better than the standard score of the task. These findings provide support for a new methodological frame to assess the strength of semantic memory through the verbal fluency task, with potential to amplify the predictive power of this test. Graph analysis is likely to become clinically relevant in neurology and psychiatry, and may be particularly useful for the differential diagnosis of the elderly.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Artificial neural networks are dynamic systems consisting of highly interconnected and parallel nonlinear processing elements. Systems based on artificial neural networks have high computational rates due to the use of a massive number of these computational elements. Neural networks with feedback connections provide a computing model capable of solving a rich class of optimization problems. In this paper, a modified Hopfield network is developed for solving problems related to operations research. The internal parameters of the network are obtained using the valid-subspace technique. Simulated examples are presented as an illustration of the proposed approach. Copyright (C) 2000 IFAC.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Web services are software accessible via the Internet that provide functionality to be used by applications. Today, it is natural to reuse third-party services to compose new services. This process of composition can occur in two styles, called orchestration and choreography. A choreography represents a collaboration between services which know their partners in the composition, to achieve the service s desired functionality. On the other hand, an orchestration have a central process (the orchestrator) that coordinates all application operations. Our work is placed in this latter context, by proposing an abstract model for running service orchestrations. For this purpose, a graph reduction machine will be defined for the implementation of service orchestrations specified in a variant of the PEWS composition language. Moreover, a prototype of this machine (in Java) is built as a proof of concept
Resumo:
This paper presents two approaches of Artificial Immune System for Pattern Recognition (CLONALG and Parallel AIRS2) to classify automatically the well drilling operation stages. The classification is carried out through the analysis of some mud-logging parameters. In order to validate the performance of AIS techniques, the results were compared with others classification methods: neural network, support vector machine and lazy learning.
Resumo:
During the petroleum well drilling operation many mechanical and hydraulic parameters are monitored by an instrumentation system installed in the rig called a mud-logging system. These sensors, distributed in the rig, monitor different operation parameters such as weight on the hook and drillstring rotation. These measurements are known as mud-logging records and allow the online following of all the drilling process with well monitoring purposes. However, in most of the cases, these data are stored without taking advantage of all their potential. On the other hand, to make use of the mud-logging data, an analysis and interpretationt is required. That is not an easy task because of the large volume of information involved. This paper presents a Support Vector Machine (SVM) used to automatically classify the drilling operation stages through the analysis of some mud-logging parameters. In order to validate the results of SVM technique, it was compared to a classification elaborated by a Petroleum Engineering expert. © 2006 IEEE.
Resumo:
Motivated by rising drilling operation costs, the oil industry has shown a trend towards real-time measurements and control. In this scenario, drilling control becomes a challenging problem for the industry, especially due to the difficulty associated to parameters modeling. One of the drill-bit performance evaluators, the Rate of Penetration (ROP), has been used in the literature as a drilling control parameter. However, the relationships between the operational variables affecting the ROP are complex and not easily modeled. This work presents a neuro-genetic adaptive controller to treat this problem. It is based on the Auto-Regressive with Extra Input Signals model, or ARX model, to accomplish the system identification and on a Genetic Algorithm (GA) to provide a robust control for the ROP. Results of simulations run over a real offshore oil field data, consisted of seven wells drilled with equal diameter bits, are provided. © 2006 IEEE.
Resumo:
This paper describes an investigation of the hybrid PSO/ACO algorithm to classify automatically the well drilling operation stages. The method feasibility is demonstrated by its application to real mud-logging dataset. The results are compared with bio-inspired methods, and rule induction and decision tree algorithms for data mining. © 2009 Springer Berlin Heidelberg.