920 resultados para Grain crops


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presently developed two-stage process involves diping the prefired porous disks of n-BaTiO3 in nonaqueous solutions containing Al-buty rate, Ti-isopropoxide, and tetraethyl silicate and subsequent sintering. This leads to uniform distribution of the grain-boundary layer (GBL) modifiers (Al2O3+ TiO2+ SiO2) and better control of the grain size as well as the positive temperature coefficient of resistivity characteristics. The technique is particularly suited for GBL modifiers in low concentrations (< 1%).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An attempt has been made to systematically investigate the effects of microstructural parameters, such as the prior austenite grain size (PAGS), in influencing the resistance to fatigue crack growth (FCG) in the near-threshold region under three different temper levels in a quenched and tempered high-strength steel. By austenitizing at various temperatures, the PAGS was varied from about 0.7 to 96 μm. The microstructures with these grain sizes were tempered at 200 °C, 400 °C, and 530 °C and tested for fatigue thresholds and crack closure. It has been found that, in general, three different trends in the dependence of both the total threshold stress intensity range, ΔK th , and the intrinsic threshold stress intensity range, ΔK eff, th , on the PAGS are observable. By considering in detail the factors such as cyclic stress-strain behavior, environmental effects on FCG, and embrittlement during tempering, the present observations could be rationalized. The strong dependence of ΔK th and ΔK eff, th on PAGS in microstructures tempered at 530 °C has been primarily attributed to cyclic softening and thereby the strong interaction of the crack tip deformation field with the grain boundary. On the other hand, a less strong dependence of ΔK th and ΔK eff, th on PAGS is suggested to be caused by the cyclic hardening behavior of lightly tempered microstructures occurring in 200 °C temper. In both microstructures, crack closure influenced near-threshold FCG (NTFCG) to a significant extent, and its magnitude was large at large grain sizes. Microstructures tempered at the intermediate temperatures failed to show a systematic variation of ΔKth and ΔKeff, th with PAGS. The mechanisms of intergranular fracture vary between grain sizes in this temper. A transition from “microstructure-sensitive” to “microstructure-insensitive” crack growth has been found to occur when the zone of cyclic deformation at the crack tip becomes more or less equal to PAGS. Detailed observations on fracture morphology and crack paths corroborate the grain size effects on fatigue thresholds and crack closure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy is a major constituent of a small-scale industry such as grain mills. Based on a sample survey of several mills spread over Karnataka, a state in India, a number of energy analyses were conducted primarily to establish relationships and secondarily to look at them in more detail. Initially specific energy consumption (SEC) was computed for all industries so as to compare their efficiencies of energy use. A wide disparity exists in SEC among various grain mills. In order to understand the disparities better, regression analyses were performed on the variables energy and production, SEC and production, and energy/SEC with percentage production capacity utilization. The studies show that smaller range industries have lower capacity utilization. This paper also examines the energy savings possible by shifting industries from the lower production ranges to the next higher range (thereby utilizing installed production capacity optimally). This leads to an overall energy capacity saving of 23.12% for the foodgrain sector and 18.67% for the paddy dehusking subgroup. If this is extrapolated to the whole state, we obtain a saving of 55 million kWh.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The long-wavelength hydrodynamics of the Renn-Lubensky twist grain boundary phase with grain boundary angle 2pialpha, alpha irrational, is studied. We find three propagating sound modes, with two of the three sound speeds vanishing for propagation orthogonal to the grains, and one vanishing for propagation parallel to the grains as well. In addition, we find that the viscosities eta1, eta2, eta4, and eta5 diverge like 1/Absolute value of omega as frequency omega --> 0, with the divergent parts DELTAeta(i) satisfying DELTAeta1DELTAeta4=(DELTAeta5)2, exactly. Our results should also apply to the predicted decoupled lamellar phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a large decrease in tetragonal to cubic phase transformation temperature when grain size of bulk CuFe2O4 is reduced by mechanical ball milling. The change in phase transformation temperature was inferred from in situ high temperature conductivity and x-ray diffraction measurements. The decrease in conductivity with grain size suggests that ball milling has not induced any oxygen vacancy while the role of cation distribution in the observed decrease in phase transformation temperature is ruled out from in-field Fe-57 Mossbauer and extended x-ray absorption fine structure measurements. The reduction in the phase transformation temperature is attributed to the stability of structures with higher crystal symmetry at lower grain sizes due to negative pressure effect. (C) 2011 American Institute of Physics. doi: 10.1063/1.3493244]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tensile experiments at 673 K and grain sizes from similar to 8 to 17 mu m revealed large ductility at a low strain rate and a reduced ductility at a high strain rate, corresponding to a change from a high to a low value for the strain rate sensitivity. High strain rate deformation led to fracture by flow localization, whereas low strain rate deformation involved fracture by cavity nucleation and growth. Analysis revealed that grain boundary migration can assist significantly in reducing the stress concentrations caused by grain boundary sliding, thereby retarding cavity nucleation. Calculations demonstrate that the interlinkage of voids parallel and perpendicular to the tensile axis occurs significantly, so that it is not always possible to use the cavity shapes to distinguish between diffusion and plasticity controlled growth. Cavitation damage evolves slowly in materials with a coarser grain size because of reduced nucleation related to a reduction in the strain rate sensitivity and associated grain boundary sliding. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pure Y2O3 and Y2O3---ZrO2 solid solutions have been prepared by melt atomization and by pyrolysis of nitrate solutions. Extended solubility is readily achieved in both techniques for the entire composition range investigated: melts with 0–30% ZrO2 and precursors with 0–50% ZrO2. However, solidification of under cooled droplets yields almost exclusively single phase powders with the structure of cubic yttria (D53). In contrast, the pyrolysis route leads to a sequence of metastable microstructures beginning with a nanocrystalline disordered fluorite-based (C1) solid solution. Further heating leads to the evolution of much larger (micron size) flake crystals with a {001} texture, concurrent with partial ordering of the oxygen ions to the sites occupied in the D53 structure. The driving force for ordering and the rate of grain growth decrease with increasing ZrO2 addition. Abrupt heating to high temperatures or electron irradiation can induce ordering without substantial grain growth. There is no significant reduction in porosity during the recrystallization, which with the other observations suggests that grain growth is driven by the free energy available for the ordering transformation from fluorite to the yttria structure. This route offers opportunities for single crystal thin film development at relatively low processing temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pure Y2O3 and Y2O3-ZrO2 solid solutions have been prepared by melt atomization and by pyrolysis of nitrate solutions. Extended solubility is readily achieved in both techniques for the entire composition range investigated: melts with 0-30% ZrO2 and precursors with 0-50% ZrO2. However, solidification of under cooled droplets yields almost exclusively single phase powders with the structure of cubic yttria (D5(3)). In contrast, the pyrolysis route leads to a sequence of metastable microstructures beginning with a nanocrystalline disordered fluorite-based (C1) solid solution. Further heating leads to the evolution of much larger (micron size) flake crystals with a {001} texture, concurrent with partial ordering of the oxygen ions to the sites occupied in the D5(3) structure. The driving force for ordering and the rate of grain growth decrease with increasing ZrO2 addition. Abrupt heating to high temperatures or electron irradiation can induce ordering without substantial grain growth. There is no significant reduction in porosity during the recrystallization, which with the other observations suggests that grain growth is driven by the free energy available for the ordering transformation from fluorite to the yttria structure. This route offers opportunities for single crystal thin film development at relatively low processing temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grain boundary sliding during high temperature deformation can lead to stress concentrations and an enhancement of diffusion in mobile boundaries. Experiments were conducted on a fine grained 3 mol% yttria stabilized tetragonal zirconia, under conditions associated with superplastic flow involving grain boundary sliding. Tracer diffusion studies under creep conditions and without load indicate that there is no enhancement in either the lattice or grain boundary diffusivities. The experimental creep data are consistent with an interface controlled diffusion creep mechanism. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An integrated model is developed, based on seasonal inputs of reservoir inflow and rainfall in the irrigated area, to determine the optimal reservoir release policies and irrigation allocations to multiple crops. The model is conceptually made up of two modules, Module 1 is an intraseasonal allocation model to maximize the sum of relative yields of all crops, for a given state of the system, using linear programming (LP). The module takes into account reservoir storage continuity, soil moisture balance, and crop root growth with time. Module 2 is a seasonal allocation model to derive the steady state reservoir operating policy using stochastic dynamic programming (SDP). Reservoir storage, seasonal inflow, and seasonal rainfall are the state variables in the SDP. The objective in SDP is to maximize the expected sum of relative yields of all crops in a year. The results of module 1 and the transition probabilities of seasonal inflow and rainfall form the input for module 2. The use of seasonal inputs coupled with the LP-SDP solution strategy in the present formulation facilitates in relaxing the limitations of an earlier study, while affecting additional improvements. The model is applied to an existing reservoir in Karnataka State, India.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper with four widely differing grain sizes was subjected to high-strain-rate plastic deformation in a special experimental arrangement in which high shear strains of approximately 2 to 7 were generated. The adiabatic plastic deformation produced temperature rises in excess of 300 K, creating conditions favorable for dynamic recrystallization, with an attendant change in the mechanical response. Preshocking of the specimens to an amplitude of 50 GPa generated a high dislocation density; twinning was highly dependent on grain size, being profuse for the 117- and 315-mu m grain-size specimens and virtually absent for the 9.5-mu m grain-size specimens. This has a profound effect on the subsequent mechanical response of the specimens, with the smaller grain-size material undergoing considerably more hardening than the larger grain-size material. A rationale is proposed which leads to a prediction of the shock threshold stress for twinning as a function of grain size. The strain required for localization of plastic deformation was dependent on the combined grain size/shock-induced microstructure, with the large grain-size specimens localizing more readily. The experimental results obtained are rationalized in terms of dynamic recrystallization, and a constitutive equation is applied to the experimental results; it correctly predicts the earlier onset of localization for the large grain-size specimens. It is suggested that the grain-size dependence of shock response can significantly affect the performance of shaped charges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Donor-doped n-(Ba,Pb)TiO3 polycrystalline ceramics exhibit distinctly two-step positive temperature coefficient of resistance (PTCR) characteristics when formulated with suitable combinations of B2O3 and Al2O3 as grain boundary modifiers by heterogeneous addition. B2O3 or Al2O3 when added singularly resulted in either steep or broad PTCR jumps respectively across the phase transition. The two-step PTCR is attributed to the activation of the acceptor states, created through B2O3 and Al2O3, for various temperature regimes above the Curie point (T-c). The changing pattern of trap states is evident from the presence of Ti4+-O--Al3+ type hole centres in the grain boundary layer regions, identified in the electron paramagnetic resonance (EPR) spectra. That charge redistribution occurs among the inter-band gap defect states on crossing the Curie temperature is substantiated by the temperature coefficient in the EPR results. Capacitance-voltage results clearly show that there is an increase in the density of trap states with the addition of B2O3 and Al2O3. The spread in energy values of these trap states is evident from the large change in barrier height (phi similar or equal to 0.25-0.6 eV) between 500 and 650 K.

Relevância:

20.00% 20.00%

Publicador: