926 resultados para Graded mesh
Resumo:
Traumatic injuries treatment of the fronto-naso-orbito-ethmoidal region has been one of the most challenging treatments within maxillofacial surgery, particularly of extensive orbital defects, very common in this type of pathologic condition. A 48-year-old man involved in a car collision presented an extensive bilateral fracture of the orbit medial wall, nasal bones, the nasal septum, and the frontal anterior table. The clinical and tomographic findings concluded the diagnosis of a maxilla and fronto-naso-orbito-ethmoidal fracture. Among the variety of biomaterials, the titanium mesh was elected because of the extension and magnitude of the bone defect, obtaining this way esthetic and functional results with better prognosis.
Resumo:
We model the electrical behavior of organic light-emitting diodes whose emissive multilayer is formed by blends of an electron transporting material, tris-(8-hydroxyquinoline) aluminum (Alq(3)) and a hole transporting material, N,N-'-diphenyl-N,N-'-bis(1,1(')-biphenyl)-4,4-diamine. The multilayer is composed of layers of different concentration. The Alq(3) concentration gradually decreases from the cathode to the anode. We demonstrate that these graded devices have higher efficiency and operate at lower applied voltages than devices whose emissive layer is made of nominally homogeneous blends. Our results show an important advantage of graded devices, namely, the low values of the recombination rate distribution near the cathode and the anode, so that electrode quenching is expected to be significantly suppressed in these devices. (C) 2004 American Institute of Physics.
Resumo:
Aluminum matrix composites are currently considered as promising materials for tribological applications in the automotive, aircraft and aerospace industries due to their great advantage of a high strength-to-weight ratio. A superior combination of surface and bulk mechanical properties can be attained if these composites are processed as functionally graded materials (FGM's). In this work, homogeneous aluminum based matrix composite, cast by gravity, and aluminum composites with functionally graded properties, obtained by centrifugal cast, are tested against nodular cast iron in a pin-on-disc tribometer. Three different volume fractions of SiC reinforcing particles in each FGM were considered in order to evaluate their friction and wear properties. The sliding experiments were conducted without lubrication, at room temperature, under a normal load of 5 N and constant sliding speed of 0.5 ms-1. The worn surfaces as well as the wear debris were characterized by SEM/EDS and by atomic force microscopy (AFM). The friction coefficient revealed a slightly decrease (from 0.60 to 0.50) when FGM's are involved in the contact instead of the homogeneous composite. Relatively low values of the wear coefficient were obtained for functionally graded aluminum matrix composites (≈10-6 mm3N-1 m-1), which exhibited superior wear resistance than the homogeneous composite and the opposing cast iron surface. Characterization of worn surfaces indicated that the combined effect of reinforcing particles as load bearing elements and the formation of protective adherent iron-rich tribolayers has a decisive role on the friction and wear properties of aluminum matrix composites.
Resumo:
A 2-month-old dog was presented with injuries involving both hind paws. Only the 5th digit and its digital pad were present on the right paw. Following a full-thickness skin graft, the 5th digital pad was transferred distal to the metatarsal bones. The transferred pad permitted weight-bearing on the limb.
Resumo:
An improvement to the quality bidimensional Delaunay mesh generation algorithm, which combines the mesh refinement algorithms strategy of Ruppert and Shewchuk is proposed in this research. The developed technique uses diametral lenses criterion, introduced by L. P. Chew, with the purpose of eliminating the extremely obtuse triangles in the boundary mesh. This method splits the boundary segment and obtains an initial prerefinement, and thus reducing the number of necessary iterations to generate a high quality sequential triangulation. Moreover, it decreases the intensity of the communication and synchronization between subdomains in parallel mesh refinement. © 2008 IEEE.
Resumo:
This study aimed to compare in vitro the shear bond strength between metallic brackets (Abzil) with conventional mesh bases and metallic brackets with bases industrially sandblasted with aluminum oxide using three adhesive systems, in order to assess the influence of sandblasting on adhesiveness and to compare 3 different bonding systems. Two hundred and forty bovine incisors were used and randomly divided into 6 groups (40 teeth in each group), according to the bracket base and to the bonding system. The brackets were direct-bonded in bovine teeth with 3 adhesive systems: System A - conventional Transbond™ XT (3M -Unitek); System B - Transbond™ Plus Self Etching Primer + Transbond™ XT (3M - Unitek) and System C - Fuji ORTHO LC resin-reinforced glass ionomer cement in capsules (GC Corp.). Shear bond strength tests were performed 24 hours after bonding, in a DL-3000 universal testing machine (EMIC), using a load cell of 200 kgf and a speed of 1 mm/min. The results were submitted to statistical analysis and showed no significant difference between conventional and sandblasted bracket bases. However, comparison between the bonding systems presented significantly different results. System A (14.92 MPa) and system C (13.24 MPa) presented statistically greater shear bond strength when compared to system B (10.66 MPa). There was no statistically significant difference between system A and system C.
Resumo:
The applications of the Finite Element Method (FEM) for three-dimensional domains are already well documented in the framework of Computational Electromagnetics. However, despite the power and reliability of this technique for solving partial differential equations, there are only a few examples of open source codes available and dedicated to the solid modeling and automatic constrained tetrahedralization, which are the most time consuming steps in a typical three-dimensional FEM simulation. Besides, these open source codes are usually developed separately by distinct software teams, and even under conflicting specifications. In this paper, we describe an experiment of open source code integration for solid modeling and automatic mesh generation. The integration strategy and techniques are discussed, and examples and performance results are given, specially for complicated and irregular volumes which are not simply connected. © 2011 IEEE.
Resumo:
The use of QoS parameters to evaluate the quality of service in a mesh network is essential mainly when providing multimedia services. This paper proposes an algorithm for planning wireless mesh networks in order to satisfy some QoS parameters, given a set of test points (TPs) and potential access points (APs). Examples of QoS parameters include: probability of packet loss and mean delay in responding to a request. The proposed algorithm uses a Mathematical Programming model to determine an adequate topology for the network and Monte Carlo simulation to verify whether the QoS parameters are being satisfied. The results obtained show that the proposed algorithm is able to find satisfactory solutions.
Resumo:
This paper describes strategies and techniques to perform modeling and automatic mesh generation of the aorta artery and its tunics (adventitia, media and intima walls), using open source codes. The models were constructed in the Blender package and Python scripts were used to export the data necessary for the mesh generation in TetGen. The strategies proposed are able to provide meshes of complicated and irregular volumes, with a large number of mesh elements involved (12,000,000 tetrahedrons approximately). These meshes can be used to perform computational simulations by Finite Element Method (FEM). © Published under licence by IOP Publishing Ltd.
Resumo:
Purpose: It is recognized that chronic inflammation can cause cancer. Even though most of the available synthetic meshes are considered non-carcinogenic, the inflammatory response to an infected mesh plays a constant aggression to the skin. Chronic mesh infection is frequently the result of misuse of mesh, and due to the challenging nature of this condition, patients usually suffer for years until the infected mesh is removed by surgical excision. Methods: We report two cases of squamous-cell carcinoma (SCC) of the abdominal wall, arising in patients with long-term mesh infection. Results: In both patients, the degeneration of mesh infection into SCC was presumably caused by the long-term inflammation secondary to infection. Patients presented with advanced SCC behaving just like the Marjolin's ulcers of burns. Radical surgical excision was the treatment of choice. The involvement of the bowel played an additional challenge in case 1, but it was possible to resect the tumor and the involved bowel and reconstruct the abdominal wall using polypropylene mesh as onlay reinforcement, in a single stage operation. He is now under adjuvant chemotherapy. The big gap in the midline after tumor resection in case 2 required mesh bridging to close the defect. The poor prognosis of case 2 who died months after the operation, and the involvement of the armpit, groin and mesenteric nodes in case 1 shows how aggressive this disease can be. Conclusion: Infected mesh must be treated early, by complete excision of the mesh. Long-standing mesh infection can degenerate into aggressive squamous-cell carcinoma of the skin. © 2013 Springer-Verlag France.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The aim of this study was to evaluate the efficacy and safety of traumatic orbital defect reconstruction with titanium mesh. A retrospective study was made. Evaluations were made after a minimum postoperative follow-up of 12 months, looking for the main complications. Twenty-four patients were included in this evaluation; 19 were male (79.1%) and 5 (20.8%) were female. The main injury etiology was vehicle accidents (50%) followed by other causes. Fourteen patients (58.3%) presented orbital floor fractures, and 10 had more than one wall fractured (41.6%). Permanent infraorbital nerve hypoesthesia was observed in two patients (8.3%), enophthalmos occurred in five patients (20.8%), and exophthalmos was found in two patients (8.3%). Four patients (16.6%) still presented evidence of residual prolapsed intraorbital content, and one of those needed further surgical correction; sinusitis occurred in one patient (4.1%). Titanium mesh is a reliable option for orbital reconstruction, despite some complications found in this sample.