957 resultados para Glucose homeostasis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Glucose-insulin-potassium (GIK) infusion improves cardiac function and outcome during acute ischaemia. Objective: To determine whether GIK infusion benefits patients with chronic ischaemic left ventricular dysfunction, and if so whether this is related to the presence and nature of viable myocardium. Methods: 30 patients with chronic ischaemic left ventricular dysfunction had dobutamine echocardiography and were given a four hour infusion of GIK. Segmental responses were quantified by improvement in wall motion score index (WMSI) and peak systolic velocity using tissue Doppler. Global responses were assessed by left ventricular volume and ejection fraction, measured using a three dimensional reconstruction. Myocardial perfusion was determined in 15 patients using contrast echocardiography. Results: WMSI (mean (SD)) improved with dobutamine (from 1.8 (0.4) to 1.6 (0.4), p < 0.001) and with GIK (from 1.8 (0.4) to 1.7 (0.4) p < 0.001); there was a similar increment for both. Improvement in wall motion score with GIK was observed in 55% of the 62 segments classed as viable by dobutamine echocardiography, and in 5% of 162 classed as non-viable. There was an increment in peak systolic velocity after both doputamine echocardiography (from 2.5 (1.8) to 3.2 (2.2) cm/s, p < 0.01) and GIK (from 3.0 (1.6) to 3.5 (17) cm/s, p < 0.001). The GlK effects were not mediated by changes in pulse, mean arterial pressure, lactate, or catecholamines, nor did they correlate with myocardial perfusion. End systolic volume improved after GlK (p = 0.03), but only in 25 patients who had viable myocardium on dobutom ne echocardiography. Conclusions: In patients with viable myocardium and chronic left ventricular dysfunction, GlK improves wall motion score, myocardial velocity, and end systolic volume, independent of effects on haemodynamics or catecholamines. The response to GlK is observed in areas of normal and abnormal perfusion assessed by contrast echocardiography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background/Aims: Host factors such as increased body mass index (BMI) and genotype-specific viral factors contribute to the development of steatosis in patients with chronic hepatitis C (HCV). We hypothesized that host metabolic factors associated with increased BMI may play a role in disease progression. Methods: Fasting serum was collected from 160 patients with chronic HCV at the time of liver biopsy and 45 age, gender and BMI matched controls, and assessed for levels of insulin, c-peptide and leptin. Results: Patients with viral genotype 3 had more severe steatosis (P = 0.0001) and developed stages 1 and 2 fibrosis at a younger age (P < 0.05) than patients with genotype 1. For both genotypes, overweight patients had significantly more steatosis and increased insulin and leptin levels. In contrast to lean patients, there was a statistically significant increase in circulating insulin levels with increasing fibrosis in overweight patients with chronic HCV (P = 0.03). Following multivariate analysis, insulin was independently associated with fibrosis (P = 0.046) but not inflammation (P = 0.83). There was no association between serum leptin levels and stage of fibrosis. Conclusions: Increasing circulating insulin levels may be a factor responsible for the association between BMI and fibrosis in patients with HCV, irrespective of viral genotype. (C) 2003 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipid homeostasis is controlled by the peroxisome proliferator-activated receptors (PPARalpha, -beta/delta, and -gamma) that function as fatty acid-dependent DNA-binding proteins that regulate lipid metabolism. In vitro and in vivo genetic and pharmacological studies have demonstrated PPARalpha regulates lipid catabolism. In contrast, PPARgamma regulates the conflicting process of lipid storage. However, relatively little is known about PPARbeta/delta in the context of target tissues, target genes, lipid homeostasis, and functional overlap with PPARalpha and -gamma. PPARbeta/delta, a very low-density lipoprotein sensor, is abundantly expressed in skeletal muscle, a major mass peripheral tissue that accounts for approximately 40% of total body weight. Skeletal muscle is a metabolically active tissue, and a primary site of glucose metabolism, fatty acid oxidation, and cholesterol efflux. Consequently, it has a significant role in insulin sensitivity, the blood-lipid profile, and lipid homeostasis. Surprisingly, the role of PPARbeta/delta in skeletal muscle has not been investigated. We utilize selective PPARalpha, -beta/delta, -gamma, and liver X receptor agonists in skeletal muscle cells to understand the functional role of PPARbeta/delta, and the complementary and/or contrasting roles of PPARs in this major mass peripheral tissue. Activation of PPARbeta/delta by GW501516 in skeletal muscle cells induces the expression of genes involved in preferential lipid utilization, beta-oxidation, cholesterol efflux, and energy uncoupling. Furthermore, we show that treatment of muscle cells with GW501516 increases apolipoprotein-A1 specific efflux of intracellular cholesterol, thus identifying this tissue as an important target of PPARbeta/delta agonists. Interestingly, fenofibrate induces genes involved in fructose uptake, and glycogen formation. In contrast, rosiglitazone-mediated activation of PPARgamma induces gene expression associated with glucose uptake, fatty acid synthesis, and lipid storage. Furthermore, we show that the PPAR-dependent reporter in the muscle carnitine palmitoyltransferase-1 promoter is directly regulated by PPARbeta/delta, and not PPARalpha in skeletal muscle cells in a PPARgamma coactivator-1-dependent manner. This study demonstrates that PPARs have distinct roles in skeletal muscle cells with respect to the regulation of lipid, carbohydrate, and energy homeostasis. Moreover, we surmise that PPARgamma/delta agonists would increase fatty acid catabolism, cholesterol efflux, and energy expenditure in muscle, and speculate selective activators of PPARbeta/delta may have therapeutic utility in the treatment of hyperlipidemia, atherosclerosis, and obesity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucose 2-oxidase (pyranose oxidase, pyranose: oxygen-2-oxidoreductase, EC 1.1.3.10) from Coriolus versicolor catalyses the oxidation of D-glucose at carbon 2 in the presence of molecular O(2) producing D-glucosone (2-keto-glucose and D-arabino-2-hexosulose) and H(2)O(2). It was used to convert D-glucose into D-glucosone at moderate pressures (i.e. up to 150 bar) with compressed air in a modified commercial batch reactor. Several parameters affecting biocatalysis at moderate pressures were investigated as follows: pressure, [enzyme], [glucose], pH, temperature, nature of fluid and the presence of catalase. Glucose 2-oxidase was purified by immobilized metal affinity chromatography on epoxy-activated Sepharose 6B-IDA-Cu(II) column at pH 6.0. The rate of bioconversion of D-glucose increased with the pressure since an increase in the pressure with compressed air resulted in higher rates of conversion. On the other hand, the presence of catalase increased the rate of reaction which strongly suggests that H(2)O(2) acted as inhibitor for this reaction. The rate of bioconversion of D-glucose by glucose 2-oxidase in the presence of either nitrogen or supercritical CO(2) at 110 bar was very low compared with the use of compressed air at the same pressure. The optimum temperature (55 degrees C) and pH (5.0) of D-glucose bioconversion as well as kinetic parameters for this enzyme were determined under moderate pressure. The activation energy (E(a)) was 32.08 kJmol(-1) and kinetic parameters (V(max), K(m), K(cat) and K(cat)/K(m)) for this bioconversion were 8.8 Umg(-1) protein, 2.95 mM, 30.81 s(-1) and 10,444.06 s(-1)M(-1), respectively. The biomass of C. versicolor as well as the cell-free extract containing glucose 2-oxidase activity were also useful for bioconversion of D-glucose at moderate pressures. The enzyme was apparently stable at moderate pressures since such pressures did not affect significantly the enzyme activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The immobilized glucose 2-oxidase (pyranose oxidase, pyranose:oxygen-2-oxidoreductase, EC 1.1.3.10) from Coriolus versicolor was used to convert D-glucose into D-glucosone at moderate pressures, up to 150 bar, with compressed air in a modified commercial batch reactor. Several parameters affecting biocatalysis at moderate pressures were investigated as follows: pressure, different forms of immobilized biocatalysts, glucose concentration, pH, temperature and the presence of catalase. Glucose 2-oxidase (GOX2) was purified by immobilized metal affinity chromatography on epoxy-activated Sepharose 6B-IDA-Cu(II) column at pH 6.0. Purified enzyme and catalase were immobilized into a polyethersulfone (PES) membrane in the presence of glutaraldehyde and gelatin. Enhancement of the bioconversion of D-glucose was done by the pressure since an increase in the pressure with compressed air increases the conversion rates. The optimum temperature and pH for bioconversion of D-glucose were found to be 62 degrees C and pH 6.0, respectively and the activation energy (E(a)) was 28.01 kJ mol(-1). The apparent kinetic constants (V(max)' K(m)', K(cat)' and K(cat)/K(m)') for this bioconversion were 2.27 U mg(-1) protein, 11.15 mM, 8.33 s(-1) and 747.38 s(-1) M(-1), respectively. The immobilized biomass of C. versicolor as well as crude extract containing GOX2 activity were also useful for bioconversion of D-glucose at 65 bar with a yield of 69.9 +/- 3.8% and 91.3 +/- 1.2%, respectively. The immobilized enzyme was apparently stable for several months without any significant loss of enzyme activity. On the other hand, this immobilized enzyme was also stable at moderate pressures, since such pressures did not affect significantly the enzyme activity. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To identify factors associated to poor glycemic control among diabetic patients seen at primary health care centers. METHODS: A cross-sectional study was carried out in a sample of 372 diabetic patients attending 32 primary health care centers in southern Brazil. Data on three hierarchical levels of health unit infrastructure, medical care and patient characteristics were collected. RESULTS: The frequency of poor glycemic control was 50.5%. Multivariate analysis (multilevel method) showed that patients with body mass indexes below 27 kg/m², patients on oral hypoglycemic agents or insulin, and patients diagnosed as diabetic over five years prior to the interview were more likely to present poor glycemic control when compared to their counterparts. CONCLUSIONS: Given the hierarchical data structuring, all associations found suggest that factors associated to hyperglycemia are related to patient-level characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucose sensing is an issue with great interest in medical and biological applications. One possible approach to glucose detection takes advantage of measuring changes in fluorescence resonance energy transfer (FRET) between a fluorescent donor and an acceptor within a protein which undergoes glucose-induced changes in conformation. This demands the detection of fluorescent signals in the visible spectrum. In this paper we analyzed the emission spectrum obtained from fluorescent labels attached to a protein which changes its conformation in the presence of glucose using a commercial spectrofluorometer. Different glucose nanosensors were used to measure the output spectra with fluorescent signals located at the cyan and yellow bands of the spectrum. A new device is presented based on multilayered a-SiC:H heterostructures to detect identical transient visible signals. The transducer consists of a p-i'(a-SiC:H)-n/p-i(a-Si:H)-n heterostructure optimized for the detection of the fluorescence resonance energy transfer between fluorophores with excitation in the violet (400 nm) and emissions in the cyan (470 nm) and yellow (588 nm) range of the spectrum. Results show that the device photocurrent signal measured under reverse bias and using appropriate steady state optical bias, allows the separate detection of the cyan and yellow fluorescence signals presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pregnancy is a dynamic state and the placenta is a temporary organ that, among other important functions, plays a crucial role in the transport of nutrients and metabolites between the mother and the fetus, which is essential for a successful pregnancy. Among these nutrients, glucose is considered a primary source of energy and, therefore, fundamental to insure proper fetus development. Several studies have shown that glucose uptake is dependent on several morphological and biochemical placental conditions. Oxidative stress results from the unbalance between reactive oxygen species (ROS) and antioxidants, in favor of the first. During pregnancy, ROS, and therefore oxidative stress, increase, due to increased tissue oxygenation. Moreover, the relation between ROS and some pathological conditions during pregnancy has been well established. For these reasons, it becomes essential to understand if oxidative stress can compromise the uptake of glucose by the placenta. To make this study possible, a trophoblastic cell line, the BeWo cell line, was used. Experiments regarding glucose uptake, either under normal or oxidative stress conditions, were conducted using tert-butylhydroperoxide (tBOOH) as an oxidative stress inducer, and 3H-2-deoxy-D-glucose (3H-DG) as a glucose analogue. Afterwards, studies regarding the involvement of glucose facilitative transporters (GLUT) and the phosphatidylinositol 3-kinases (PI3K) and protein kinase C (PKC) pathways were conducted, also under normal and oxidative stress conditions. A few antioxidants, endogenous and from diet, were also tested in order to study their possible reversible effect of the oxidative effect of tBOOH upon apical 3H-DG uptake. Finally, transepithelial studies gave interesting insights regarding the apical-to-basolateral transport of 3H-DG. Results showed that 3H-DG uptake, in BeWo cells, is roughly 50% GLUT-mediated and that tBOOH (100 μM; 24h) decreases apical 3H-DG uptake in BeWo cells by about 33%, by reducing both GLUT- (by 28%) and non-GLUT-mediated (by 40%) 3H-DG uptake. Uptake of 3H-DG and the effect of tBOOH upon 3H-DG uptake are not dependent on PKC and PI3K. Moreover, the effect of tBOOH is not associated with a reduction in GLUT1 mRNA levels. Resveratrol, quercetin and epigallocatechin-3-gallate, at 50 μM, reversed, by at least 45%, the effect of tBOOH upon 3H-DG uptake. Transwell studies show that the apical-to-basolateral transepithelial transport of 3H-DG is increased by tBOOH.In conclusion, our results show that tBOOH caused a marked decrease in both GLUT and non-GLUT-mediated apical uptake of 3H-DG by BeWo cells. Given the association of increased oxidative stress levels with several important pregnancy pathologies, and the important role of glucose for fetal development, the results of this study appear very interesting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: This study was conducted to determine the association between magnesium (Mg), body composition and insulin resistance in 136 sedentary postmenopausal women, 50 to 77 years of age. Methods: Diabetics, hypertensives and women on hormonal replacement therapy were excluded and the remaining 74 were divided according to BMI≥25 (obese: OG) and BMI<25 kg/m2 (non-obese: NOG). Nutritional data disclosed that intakes were high for protein and saturated fat, low for carbohydrates, polyunsaturated fat and Mg and normal for the other nutrients, according to recommended dietary allowances (RDA). Mg values in red blood cells (RBC-Mg) and plasma (P-Mg), were determined, as were fasting glucose, and insulin levels, Homeostasis Model Assessment (HOMA), body mass index (BMI), body fat percent (BF %), abdominal fat (AF) and free fat mass (FFM). Results: RBC-Mg values were low in both groups when compared with normal values. There were significant differences in body composition parameters, HOMA and insulin levels, with higher basal insulin levels in OG. RBC-Mg was directly correlated with insulin, HOMA and FFM in both groups, according to Pearson correlations. HOMA in OG was also directly correlated with BMI, FFM and AF. In NOG, HOMA was only correlated with FFM. The low RBC-Mg levels observed were probably due to low Mg intake and to deregulation of factors that control Mg homeostasis during menopause. Conclusions: Both Mg deficit and obesity may independently lead to a higher risk for insulin resistance and cardiovascular disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymatic defect in the world. The most common clinical manifestations are acute hemolytic anemia associated with drugs, infections, neonatal jaundice and hemolytic non-spherocytic chronic anemia. The main aim of this study was to determine the frequency of major genetic variants of G6PD leading to enzyme deficiency in children from 0 to 14 years at a Pediatric Hospital in Luanda, Angola. A cross-sectional and descriptive analytical study covered a total of 194 children aged from 0 to 14 years, of both genders and hospitalized at the Pediatric Hospital David Bernardino, Luanda between November and December, 2011. The G202A, A376G and C563T mutations of the G6PD gene were determined by real-time PCR with Taqman probes. The disabled A-/A- genotype was detected in 10 girls (10.9%). Among the boys, 21 (20.6%) presented the genotype A-. Considering all the samples, the A- variant was observed in 22.4% of cases. The Mediterranean mutation was not detected in the Angolan sample. Furthermore, no association was found between genotype and anemia, nutritional state and mucosa color. A significant association, however, was observed with jaundice. Based on the results obtained, there is a clear need to identify those with the disabled genotype in the Angolan population in order to avoid cases of drug-induced anemia, particularly in the treatment of malaria, so prevalent in Angola.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a period of time of five years, all patients who exhibited viscerocutaneous form of loxoscelism were investigated for erythrocyte glucose-6-phosphate deficiency, and in two patients out of seven it was found this deficiency. This finding suggests that this genetical enzyme deficiency could account for the hemolysis after Loxosceles bite, at least in some of the cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors have standardized methods for evaluation of the activity of the glucose-6-phosphate dehydrogenase and of glutathione reductase. The general principle of the first method was based on methemoglobin formation by sodium nitrite followed by stimulation of the glucose-6-phosphate dehydrogenase with methylene blue. Forty six adults (23 males and 23 females) were studied. Subjects were not G6PD deficient and were aged 20 to 30 years. The results showed that methemoglobin reduction by methylene blue was 154.40 and 139.90 mg/min (p<0.05) for males and females, respectively, in whole blood, and 221.10 and 207.85 mg/min (n.s.), respectively, in washed red cells. These data showed that using washed red cells and 0.7g% sodium nitrite concentration produced no differences between sexes and also shortened reading time for the residual amount of methemoglobin to 90 minutes. Glutathione reductase activity was evaluated on the basis of the fact that cystamine (a thiol agent) binds to the SH groups of hemoglobin, forming complexes. These complexes are reversed by the action of glutathione reductase, with methemoglobin reduction occurring simultaneously with this reaction. Thirty two adults (16 males and 16 females) were studied. Subjects were not G6PD deficient and were aged 20 to 30 years. Methemoglobin reduction by cystamine was 81.27 and 91.13 mg/min (p<0.01) for males and females, respectively. These data showed that using washed red cells and 0.1 M cystamine concentration permits a reading of the residual amount of methemoglobin at 180 minutes of incubation. Glutathione reductase activity was evaluated by methemoglobin reduction by cystamine in 14 females before and after treatment with 10 mg riboflavin per day for 8 days. The results were 73.69 and 94.26 jug/min (p<0.01) before and after treatment, showing that riboflavin treatment increase glutathione reductase activity even in normal individuals. Three Black G6PD-deficient individuals (2 males and 1 female) were also studied. The G6PD and glutathione reductase were partially activated, the change being more intense in males. On the basis of race and of the laboratory characteristics observed, it is possible to suggest that the G6PD deficiency of these individuals is of the African type and that the female is heterozygous for this deficiency. Analysis of the results as a whole permitted us to conclude that the methods proposed here were efficient for evaluating the activity of the glucose-6-phosphate dehydrogenase and of glutathione reductase. The latter is dependent on the pentose pathway, which generates NADPH, and on riboflavin, a FAD precursor vitamin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis is divided into two parts corresponding to structural studies on two different proteins. The first part concerns the study of two UDP-glucose dehydrogenases (UGDs) from Sphingomonas elodea ATCC 31461 and Burkholderia cepacia IST 408, both involved in exopolysaccharide production. Their relevance arises because some of these bacterial exopolysaccharides are valuable as established biotechnological products, the former case, whilst others are highly problematic, when used by pathogens in biofilm formation over biological surfaces, as the latter case, namely in the human lungs. The goal of these studies is to increase our knowledge regarding UGDs structural properties, which can potentiate either the design of activity enhancers to respond to the increased demand of useful biofilms, or the design of inhibitors of biofilm production, in order to fight invading pathogens present in several infections. The thesis reports the production and crystallisation of both proteins, the determination of initial phases by single-wavelength anomalous dispersion (SAD) in S. elodea crystals using a seleno-methionine isoform, and phasing of B. cepacia crystals by molecular replacement (MR) using the S. elodea model, as well as the refinement, structural analysis and comparison between the several UGDs structures available during this work.(...)