991 resultados para Gislotica-Mechanical Solutions
Resumo:
Purpose: In this work, tension, impact, bend and fatigue tests were conducted in an AM60 magnesium alloy. The effects of environmental temperature and loading rates on impact and tension behavior of the alloy were also investigated. Design/methodology/approach: The tests were conducted using an Instron universal testing machine. The loading speed was changed from 1 mm/min to 300 mm/min to gain a better understanding of the effect of strain rate. To understand the failure behavior of this alloy at different environmental temperatures, Charpy impact test was conducted in a range of temperatures (-40~35°C). Plane strain fracture toughness (KIC) was evaluated using compact tension (CT) specimen. To gain a better understanding of the failure mechanisms, all fracture surfaces were observed using scanning electron microscopy (SEM). In addition, fatigue behavior of this alloy was estimated using tension test under tension-tension condition at 30 Hz. The stress amplitude was selected in the range of 20~50 MPa to obtain the S-N curve. Findings: The tensile test indicated that the mechanical properties were not sensitive to the strain rates applied (3.3x10-4~0.1) and the plastic deformation was dominated by twining mediated slip. The impact energy is not sensitive to the environmental temperature. The plane strain fracture toughness and fatigue limit were evaluated and the average values were 7.6 MPa.m1/2 and 25 MPa, respectively. Practical implications: Tested materials AM60 Mg alloy can be applied among others in automotive industry aerospace, communication and computer industry. Originality/value: Many investigations have been conducted to develop new Mg alloys with improved stiffness and ductility. On the other hand, relatively less attention has been paid to the failure mechanisms of Mg alloys, such as brittle fracture and fatigue, subjected to different environmental or loading conditions. In this work, tension, impact, bend and fatigue tests were conducted in an AM60 magnesium alloy.
Resumo:
Nanostructured high strength Mg-5%Al-x%Nd alloys were prepared by mechanical alloying. Microstructural characterization reveled average crystalline size to be about 30 nm after mechanical alloying while it increased to about 90 nm after sintering and extrusion. Mechanical properties showed increase in 0.2% yield stress, ultimate tensile strength was attributed to reduction in gain size as well as to the enhanced diffusion after mechanical activation. Although ultra high yield stress was observed from the specimen with 5% Nd, its ductility was reduced to about 1.6%.
Analysis of strain-rate dependent mechanical behavior of single chondrocyte : a finite element study
Resumo:
Various studies have been conducted to investigate the effects of impact loading on cartilage damage and chondrocyte death. These have shown that the rate and magnitude of the applied strain significantly influence chondrocyte death, and that cell death occurred mostly in the superficial zone of cartilage suggesting the need to further understand the fundamental mechanisms underlying the chondrocytes death induced at certain levels of strain-rate. To date there is no comprehensive study providing insight on this phenomenon. The aim of this study is to examine the strain-rate dependent behavior of a single chondrocyte using a computational approach based on Finite Element Method (FEM). An FEM model was developed using various mechanical models, which were Standard Neo-Hookean Solid (SnHS), porohyperelastic (PHE) and poroviscohyperelastic (PVHE) to simulate Atomic Force Microscopy (AFM) experiments of chondrocyte. The PVHE showed, it can capture both relaxation and loading rate dependent behaviors of chondrocytes, accurately compared to other models.
Resumo:
Finite element method (FEM) relies on an approximate function to fit into a governing equation and minimizes the residual error in the integral sense in order to generate solutions for the boundary value problems (nodal solutions). Because of this FEM does not show simultaneous capacities for accurate displacement and force solutions at node and along an element, especially when under the element loads, which is of much ubiquity. If the displacement and force solutions are strictly confined to an element’s or member’s ends (nodal response), the structural safety along an element (member) is inevitably ignored, which can definitely hinder the design of a structure for both serviceability and ultimate limit states. Although the continuous element deflection and force solutions can be transformed into the discrete nodal solutions by mesh refinement of an element (member), this setback can also hinder the effective and efficient structural assessment as well as the whole-domain accuracy for structural safety of a structure. To this end, this paper presents an effective, robust, applicable and innovative approach to generate accurate nodal and element solutions in both fields of displacement and force, in which the salient and unique features embodies its versatility in applications for the structures to account for the accurate linear and second-order elastic displacement and force solutions along an element continuously as well as at its nodes. The significance of this paper is on shifting the nodal responses (robust global system analysis) into both nodal and element responses (sophisticated element formulation).
Resumo:
Glioblastoma multiforme (GBM) is a malignant astrocytoma of the central nervous system associated with a median survival time of 15 months, even with aggressive therapy. This rapid progression is due in part to diffuse infiltration of single tumor cells into the brain parenchyma, which is thought to involve aberrant interactions between tumor cells and the extracellular matrix (ECM). Here, we test the hypothesis that mechanical cues from the ECM contribute to key tumor cell properties relevant to invasion. We cultured a series of glioma cell lines (U373-MG, U87-MG, U251-MG, SNB19, C6) on fibronectin-coated polymeric ECM substrates of defined mechanical rigidity and investigated the role of ECM rigidity in regulating tumor cell structure, migration, and proliferation. On highly rigid ECMs, tumor cells spread extensively, form prominent stress fibers and mature focal adhesions, and migrate rapidly. As ECM rigidity is lowered to values comparable with normal brain tissue, tumor cells appear rounded and fail to productively migrate. Remarkably, cell proliferation is also strongly regulated by ECM rigidity, with cells dividing much more rapidly on rigid than on compliant ECMs. Pharmacologic inhibition of nonmuscle myosin II–based contractility blunts this rigidity-sensitivity and rescues cell motility on highly compliant substrates. Collectively, our results provide support for a novel model in which ECM rigidity provides a transformative, microenvironmental cue that acts through actomyosin contractility to regulate the invasive properties of GBM tumor cells.
Resumo:
Presentation by Dr Caroline Grant, Science & Engineering Faculty, IHBI, at Managing your research data seminar, 2012
Resumo:
Biodiesel derived from microalgae is one of a suite of potential solutions to meet the increasing demand for a renewable, carbon-neutral energy source. However, there are numerous challenges that must be addressed before algae biodiesel can become commercially viable. These challenges include the economic feasibility of harvesting and dewatering the biomass and the extraction of lipids and their conversion into biodiesel. Therefore, it is essential to find a suitable extraction process given these processes presently contribute significantly to the total production costs which, at this stage, inhibit the ability of biodiesel to compete financially with petroleum diesel. This study focuses on pilot-scale (100 kg dried microalgae) solvent extraction of lipids from microalgae and subsequent transesterification to biodiesel. Three different solvents (hexane, isopropanol (IPA) and hexane + IPA (1:1)) were used with two different extraction methods (static and Soxhlet) at bench-scale to find the most suitable solvent extraction process for the pilot-scale. The Soxhlet method extracted only 4.2% more lipid compared to the static method. However, the fatty acid profiles of different extraction methods with different solvents are similar, suggesting that none of the solvents or extraction processes were biased for extraction of particular fatty acids. Considering the cost and availability of the solvents, hexane was chosen for pilot-scale extraction using static extraction. At pilot-scale the lipid yield was found to be 20.3% of total biomass which is 2.5% less than from bench scale. Extracted fatty acids were dominated by polyunsaturated fatty acids (PUFAs) (68.94±0.17%) including 47.7±0.43 and 17.86±0.42% being docosahexaenoic acid (DHA) (C22:6) and docosapentaenoic acid (DPA) (C22:5, ω-3), respectively. These high amounts of long chain poly unsaturated fatty acids are unique to some marine microalgae and protists and vary with environmental conditions, culture age and nutrient status, as well as with cultivation process. Calculated physical and chemical properties of density, viscosity of transesterified fatty acid methyl esters (FAMEs) were within the limits of the biodiesel standard specifications as per ASTM D6751-2012 and EN 14214. The calculated cetane number was, however, significantly lower (17.8~18.6) compared to ASTM D6751-2012 or EN 14214-specified minimal requirements. We conclude that the obtained microalgal biodiesel would likely only be suitable for blending with petroleum diesel to a maximum of 5 to 20%.
Resumo:
Industrial transformer is one of the most critical assets in the power and heavy industry. Failures of transformers can cause enormous losses. The poor joints of the electrical circuit on transformers can cause overheating and results in stress concentration on the structure which is the major cause of catastrophic failure. Few researches have been focused on the mechanical properties of industrial transformers under overheating thermal conditions. In this paper, both mechanical and thermal properties of industrial transformers are jointly investigated using Finite Element Analysis (FEA). Dynamic response analysis is conducted on a modified transformer FEA model, and the computational results are compared with experimental results from literature to validate this simulation model. Based on the FEA model, thermal stress is calculated under different temperature conditions. These analysis results can provide insights to the understanding of the failure of transformers due to overheating, therefore are significant to assess winding fault, especially to the manufacturing and maintenance of large transformers.
Resumo:
Changes in the construction sector are creating opportunities in research to maximise the benefits of those changes and to continue the exciting developments in improved people skills, new processes and developing technologies. Many research centres around the world are investigating aspects of the current changes to drive their particular expertise forward. However, the CIB Integrated Design and Delivery Solutions (IDDS) priority research theme takes a higher-level view of the changes and then focuses down on a prioritised set of research targets. These targets have been investigated, re-focussed and validated over a period of four years through many workshops, conferences and meetings by a wide ranging group of representatives from approximately 90 industry and research organisations. The outcomes of such research, once put into practice should be significantly shortened timespans from conception of need to occupation of new or revised structures. As time is money, the owners will get their investments into productive use sooner, which means a shorter payback time. In addition, there will inevitably be a reduction in construction costs as productivity increases. The improvements in reliable delivery and improved quality currently being seen in relatively simplistic use of Building information Modelling (BIM) (compared to full IDDS) will inevitably continue its on-going trajectory of improvement. We should also consider the wider economic contribution to society that will stem from such improvements and, finally, and by no means unimportantly, the reliable modelling and delivery of sustainability at both the building and estate/ area scale will significantly improve carbon footprints and other sustainable outcomes. Whilst there are huge opportunities for early adopters, the primary risk will be the expansion of the gap between those working in this way and those who are not so advanced or who even refuse to progress . The opportunities to address the significant and widely varying wastes within the structure of the construction sector and within and across projects are huge and timely and industry is encouraged to become involved.
Resumo:
Integrated design and delivery solutions (IDDS) is a priority theme of the International Council for Research and Innovation in Building and Construction (CIB), which will be used to drive the global research agenda forward. IDDS will use collaborative work processes and enhanced skills together with integrated data, information and knowledge management to minimize structural and process inefficiencies and to enhance the value delivered during design, build, operation, and across projects. IDDS build on building information modelling (BIM), incorporating advances in the training and employment of people, together with supporting new technologies. The successful use of IDDS involves changes in each of the project phases from conceptual planning and business case formulation to all stages of the supply chain: design, construction, commissioning, operation, retrofit and decommissioning. For each of these phases, key changes in the structure and culture of the project team across the different collaborating firms create a favourable context for IDDS. Special for IDDS thinking is the idea of adding project and whole-life value in all phases, for all stakeholders...
Resumo:
A new approach of integrated design and delivery solutions (IDDS) aims to radically improve the performance of the construction industries. IDDS builds upon recent trends in the construction industries that have seen the widespread adoption of technologies such as building information modelling (BIM) and innovative processes such as integrated project delivery. However, these innovations are seen to develop in isolation, with little consideration of the overarching interactions between people, process and technology. The IDDS approach is holistic in that it recognizes that it is only through a combination of initiatives such as skill development, process re-engineering, responsive information technology, enhanced interoperability and integrating knowledge management, among others, that radical change can be achieved. To implement IDDS requires step changes in many project aspects, and this gap between current performance and that required for IDDS is highlighted. The research required to bridge the gaps is identified in four major aspects of collaborative processes, workforce skills, integrated information and knowledge management.
Resumo:
CIB is developing a priority theme, now termed Improving Construction and Use through Integrated Design & Delivery Solutions (IDDS). The IDDS working group for this theme adopted the following definition: Integrated Design and Delivery Solutions use collaborative work processes and enhanced skills, with integrated data, information, and knowledge management to minimize structural and process inefficiencies and to enhance the value delivered during design, build, and operation, and across projects. The design, construction, and commissioning sectors have been repeatedly analysed as inefficient and may or may not be quite as bad as portrayed; however, there is unquestionably significant scope for IDDS to improve the delivery of value to clients, stakeholders (including occupants), and society in general, simultaneously driving down cost and time to deliver operational constructed facilities. Although various initiatives developed from computer‐aided design and manufacturing technologies, lean construction, modularization, prefabrication and integrated project delivery are currently being adopted by some sectors and specialisations in construction; IDDS provides the vision for a more holistic future transformation. Successful use of IDDS requires improvements in work processes, technology, and people’s capabilities to span the entire construction lifecycle from conception through design, construction, commissioning, operation, refurbishment/ retrofit and recycling, and considering the building’s interaction with its environment. This vision extends beyond new buildings to encompass modifications and upgrades, particularly those aimed at improved local and area sustainability goals. IDDS will facilitate greater flexibility of design options, work packaging strategies and collaboration with suppliers and trades, which will be essential to meet evolving sustainability targets. As knowledge capture and reuse become prevalent, IDDS best practice should become the norm, rather than the exception.
Resumo:
Changes in the construction sector are creating opportunities in research to maximise the benefits of those changes and to continue the exciting developments in improved people skills, new processes and developing technologies. There are many research centres around the world investigating aspects of the current changes to drive their particular expertise forward. However, the CIB Integrated Design and Delivery Solutions (IDDS) priority research theme takes a higher-level view of the changes and then focuses down on a prioritised set of research targets. These targets have been investigated, re-focussed and validated over a period of four years through many workshops, conferences and meetings by a wide ranging group of representatives from approximately 90 industry and research organisations. This roadmap prioritises and details the research to be performed, why and by whom. In particular, some 25 CIB Working Commissions and Task Groups are explained as having potential roles in the delivery of this research theme. We are extremely privileged to have been urged on by such distinguished construction professionals in their forewords and the case for research. The outcomes of such research, once put into practice should be significantly shortened timespans from conception of need to occupation of new or revised structures. As time is money, the owners will get their investments into productive use sooner, which means a shorter payback time. In addition, there will inevitably be a reduction in construction costs as productivity increases. The improvements in reliable delivery and improved quality currently being seen in relatively simplistic use of Building information Modelling (BIM) (compared to full IDDS) will inevitably continue its on-going trajectory of improvement. We should also consider the wider economic contribution to society that will stem from such improvements and, finally, and by no means unimportantly, the reliable modelling and delivery of sustainability at both the building and estate/ area scale will significantly improve carbon footprints and other sustainable outcomes. Whilst there are huge opportunities for early adopters, the primary risk will be the expansion of the gap between those working in this way and those who are not so advanced or who even refuse to progress1. However, a similar issue arises between industry, clients, educators and trainers; the latter have particular challenges, having existed for many years in a sector that has had relatively few technological changes. However, the opportunities to address the significant and widely varying wastes within the structure of the construction sector and within and across projects are huge and timely. Whilst this Roadmap is specifically targeted at the Standing Commissions and Task Groups of the CIB, it is hoped that there are elements for research and applied research across academia and industry.
Resumo:
Environmental engineers are increasingly being required to have knowledge about sustainability in their professional careers. Accreditation mechanisms for including sustainability in degree program requirements exist and are gradually being implemented by Engineers Australia. However, true integration of sustainability material into higher and vocational education curricula is still low, particularly outside the environmental engineering degree programs. In addition to environmental engineering, it is crucial for engineering across the specialisations, to be exposed to sustainability concepts and theories. This paper will demonstrate how sustainability as a ‘critical literacy’ can be designed for teaching within mainstream engineering education, using a current Australian project as a case study. The project demonstrates that sustainability education for all engineers is not only possible, but that there is international interest in collaborating in such an educational initiative. A pilot trial of the Introductory Module was undertaken in Semester 1 2004 and Version 2 trials are now proceeding with a number of universities and organisations nationally and internationally. Further modules are currently being developed in collaboration with Engineers Australia and UNESCO. The program is a finalist in the 2005 Banksia Awards (Category 11, Environmental Leadership Education and Training).
Resumo:
Based on the characterization by Atomic Force Microscopy (AFM), we report that the mechanical property of single chondrocytes has dependency on the strain-rates. By comparing the mechanical deformation responses and the Young’s moduli of living and fixed chondrocytes at four different strain-rates, we explore the deformation mechanisms underlying this dependency property. We found that the strain-rate-dependent mechanical property of living cells is governed by both of the cellular cytoskeleton (CSK) and the intracellular fluid when the fixed chondrocytes is mainly governed by their intracellular fluid which is called the consolidation-dependent deformation behavior. Finally, we report that the porohyperelastic (PHE) constitutive material model which can capture the consolidation-dependent behavior of both living and fixed chondrocytes is a potential candidature to study living cell biomechanics.