967 resultados para Geology, Stratigraphic -- Carboniferous
Resumo:
Climate and environmental reconstructions from natural archives are important for the interpretation of current climatic change. Few quantitative high-resolution reconstructions exist for South America which is the only land mass extending from the tropics to the southern high latitudes at 56°S. We analyzed sediment cores from two adjacent lakes in Northern Chilean Patagonia, Lago Castor (45°36′S, 71°47′W) and Laguna Escondida (45°31′S, 71°49′W). Radiometric dating (210Pb, 137Cs, 14C-AMS) suggests that the cores reach back to c. 900 BC (Laguna Escondida) and c. 1900 BC (Lago Castor). Both lakes show similarities and reproducibility in sedimentation rate changes and tephra layer deposition. We found eight macroscopic tephras (0.2–5.5 cm thick) dated at 1950 BC, 1700 BC, at 300 BC, 50 BC, 90 AD, 160 AD, 400 AD and at 900 AD. These can be used as regional time-synchronous stratigraphic markers. The two thickest tephras represent known well-dated explosive eruptions of Hudson volcano around 1950 and 300 BC. Biogenic silica flux revealed in both lakes a climate signal and correlation with annual temperature reanalysis data (calibration 1900–2006 AD; Lago Castor r = 0.37; Laguna Escondida r = 0.42, seven years filtered data). We used a linear inverse regression plus scaling model for calibration and leave-one-out cross-validation (RMSEv = 0.56 °C) to reconstruct sub decadal-scale temperature variability for Laguna Escondida back to AD 400. The lower part of the core from Laguna Escondida prior to AD 400 and the core of Lago Castor are strongly influenced by primary and secondary tephras and, therefore, not used for the temperature reconstruction. The temperature reconstruction from Laguna Escondida shows cold conditions in the 5th century (relative to the 20th century mean), warmer temperatures from AD 600 to AD 1150 and colder temperatures from AD 1200 to AD 1450. From AD 1450 to AD 1700 our reconstruction shows a period with stronger variability and on average higher values than the 20th century mean. Until AD 1900 the temperature values decrease but stay slightly above the 20th century mean. Most of the centennial-scale features are reproduced in the few other natural climate archives in the region. The early onset of cool conditions from c. AD 1200 onward seems to be confirmed for this region.
Resumo:
The surface of Mars, unshielded by thick atmosphere or global magnetic field, is exposed to high levels of cosmic radiation. This ionising radiation field is deleterious to the survival of dormant cells or spores and the persistence of molecular biomarkers in the subsurface, and so its characterisation is of prime astrobiological interest. Here, we present modelling results of the absorbed radiation dose as a function of depth through the Martian subsurface, suitable for calculation of biomarker persistence. A second major implementation of this dose accumulation rate data is in application of the optically stimulated luminescence technique for dating Martian sediments. We present calculations of the dose-depth profile in the Martian subsurface for various scenarios: variations of surface composition (dry regolith, ice, layered permafrost), solar minimum and maximum conditions, locations of different elevation (Olympus Mons, Hellas basin, datum altitude), and increasing atmospheric thickness over geological history. We also model the changing composition of the subsurface radiation field with depth compared between Martian locations with different shielding material, determine the relative dose contributions from primaries of different energies, and discuss particle deflection by the crustal magnetic fields.
Resumo:
The Western Escarpment of the Andes at 18.30°S (Arica area, northern Chile) is a classical example for a transient state in landscape evolution. This part of the Andes is characterized by the presence of >10,000 km2 plains that formed between the Miocene and the present, and >1500 m deeply incised valleys. Although processes in these valleys scale the rates of landscape evolution, determinations of ages of incision, and more importantly, interpretations of possible controls on valley formation have been controversial. This paper uses morphometric data and observations, stratigraphic information, and estimates of sediment yields for the time interval between ca. 7.5 Ma and present to illustrate that the formation of these valleys was driven by two probably unrelated components. The first component is a phase of base-level lowering with magnitudes of∼300–500 m in the Coastal Cordillera. This period of base-level change in the Arica area, that started at ca. 7.5 Ma according to stratigraphic data, caused the trunk streams to dissect headward into the plains. The headward erosion interpretation is based on the presence of well-defined knickzones in stream profiles and the decrease in valley widths from the coast toward these knickzones. The second component is a change in paleoclimate. This interpretation is based on (1) the increase in the size of the largest alluvial boulders (from dm to m scale) with distal sources during the last 7.5 m.y., and (2) the calculated increase in minimum fluvial incision rates of ∼0.2 mm/yr between ca. 7.5 Ma and 3 Ma to ∼0.3 mm/yr subsequently. These trends suggest an increase in effective water discharge for systems sourced in the Western Cordillera (distal source). During the same time, however, valleys with headwaters in the coastal region (local source) lack any evidence of fluvial incision. This implies that the Coastal Cordillera became hyperarid sometime after 7.5 Ma. Furthermore, between 7.5 Ma and present, the sediment yields have been consistently higher in the catchments with distal sources (∼15 m/m.y.) than in the headwaters of rivers with local sources (<7 m/m.y.). The positive correlation between sediment yields and the altitude of the headwaters (distal versus local sources) seems to reflect the effect of orographic precipitation on surface erosion. It appears that base-level change in the coastal region, in combination with an increase in the orographic effect of precipitation, has controlled the topographic evolution of the northern Chilean Andes.
Resumo:
The Butte-Highland mine is situated at the head of Basin Creek, in the Highland mining district, Silver Bow County, about 14 miles south of Butte. The tunnel portal and present surface plant are at an elevation of about 7350 feet above sea level, facing westward across the head of Basin Creek valley. The "ghost" mining town of Highland lies a mile to the east, near the forks of Fish Creek. Access to the mine is obtained at present from Beaudine's siding, 12 miles west. The property may also be reached, with difficulty, over poor roads from Limekiln hill, or from Moose Creek.
Resumo:
The Cardwell Mining District is part of the greater Whitehall Mining District. The district is situated about four miles to the east and northeast of Whitehall in the southern end of the Bull Mountains which are near the Continental Divide. The first reported production was in 1896 after the discovery of the Mayflower Mine. Mining has been carried on intermittently and on a small scale since that time.
Resumo:
This investigation was undertaken primarily as a problem in geologic mapping, coupled with a study of stratigraphy, glaciation, igneous phenomena, and structure. The area is admirably suited to a study of geology and geologic events. Because it is small in extent, the area was studied in some detail during the time which was devoted to field work. The record of igneous activity of past geological ages is remarkably well exposed, since Lost Creek Canyon was carved through the roof of a stock or batholith by the glaciers of the Pleistocene epoch.
Resumo:
Gold is one of the rarer metals in nature, and chemically it is one of the most inactive. Gold forms stable, natural compounds with few other elements, and only with metals.
Resumo:
This report includes the results of geological investigation of a small area in the northern part of the Argenta mining district. Approximately two square miles were mapped. The underground working of the three mines only were accessible: the Goldfinch. Golden Era, and Mayday mines.
Resumo:
The Golden Messenger Mine which is approximately twenty-three miles northeast of Helena, Montana, near York, on Trout Creek, has long presented several problems of both theoretical and practical interest.
Resumo:
Morrison Cave is located about 50 miles southeast of Butte, Montana. It was named after the man who discovered it. Later it was taken over by the State and renamed Morrison Cave State Park. Recently the government with the aid of the Civilian Conservation Corps has built a new road to the cave and has made the interior more accessible. The name of the cave is now Lewis and Clark Cavern National Monument.
Resumo:
The subject to be covered by this paper is based upon field study made during a six week stay at Jardine. The work began on June 19, 1937 and ended on July 31 of the same year.