922 resultados para Generalized Linear Model


Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: Myocardial infarction is an acute and severe cardiovascular disease that generally leads to patient admissions to intensive care units and few cases are initially admitted to infirmaries. The objective of the study was to assess whether estimates of air pollution effects on myocardial infarction morbidity are modified by the source of health information. METHODS: The study was carried out in hospitals of the Brazilian Health System in the city of São Paulo, Southern Brazil. A time series study (1998-1999) was performed using two outcomes: infarction admissions to infirmaries and to intensive care units, both for people older than 64 years of age. Generalized linear models controlling for seasonality (long and short-term trends) and weather were used. The eight-day cumulative effects of air pollutants were assessed using third degree polynomial distributed lag models. RESULTS: Almost 70% of daily hospital admissions due to myocardial infarction were to infirmaries. Despite that, the effects of air pollutants on infarction were higher for intensive care units admissions. All pollutants were positively associated with the study outcomes but SO2 presented the strongest statistically significant association. An interquartile range increase on SO2 concentration was associated with increases of 13% (95% CI: 6-19) and 8% (95% CI: 2-13) of intensive care units and infirmary infarction admissions, respectively. CONCLUSIONS: It may be assumed there is a misclassification of myocardial infarction admissions to infirmaries leading to overestimation. Also, despite the absolute number of events, admissions to intensive care units data provides a more adequate estimate of the magnitude of air pollution effects on infarction admissions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE To analyze spatial changes in the risk of AIDS and the relationship between AIDS incidence and socioeconomic variables in the state of Rondonia, Amazon region. METHODS A spatial, population case-control study in Rondonia, Brazil, based on 1,780 cases reported to the Epidemiological Surveillance System and controls based on demographic data from 1987 to 2006. The cases were grouped into five consecutive four-year periods. A generalized additive model was adjusted to the data; the dependent variable was the status of the individuals (case or control), and the independent variables were a bi-dimensional spline of the geographic coordinates and some municipality-level socioeconomic variables. The observed values of the Moran’s I test were compared to a reference distribution of values generated under conditions of spatial randomness. RESULTS AIDS risk shows a marked spatial and temporal pattern. The disease incidence is related to socioeconomic variables at the municipal level in Rondônia, such as urbanization and human capital. The highest incidence rates of AIDS are in municipalities along the BR-364 highway and calculations of the Moran’s I test show positive spatial correlation associated with proximity of the municipality to the highway in the third and fourth periods (p = 0.05). CONCLUSIONS Incidence of the disease is higher in municipalities of greater economic wealth and urbanization, and in those municipalities bisected by Rondônia’s main roads. The rapid development associated with the opening up of once remote regions may be accompanied by an increase in these risks to health.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE To analyze vaccination coverage and factors associated with a complete immunization scheme in children < 5 years old. METHODS This cross-sectional household census survey evaluated 1,209 children < 5 years old living in Bom Jesus, Angola, in 2010. Data were obtained from interviews, questionnaires, child immunization histories, and maternal health histories. The statistical analysis used generalized linear models, in which the dependent variable followed a binary distribution (vaccinated, unvaccinated) and the association function was logarithmic and had the children’s individual, familial, and socioeconomic factors as independent variables. RESULTS Vaccination coverage was 37.0%, higher in children < 1 year (55.0%) and heterogeneous across neighborhoods; 52.0% of children of both sexes had no immunization records. The prevalence rate of vaccination significantly varied according to child age, mother’s level of education, family size, ownership of household appliances, and destination of domestic waste. CONCLUSIONS Vulnerable groups with vaccination coverage below recommended levels continue to be present. Some factors indicate inequalities that represent barriers to full immunization, indicating the need to implement more equitable policies. The knowledge of these factors contributes to planning immunization promotion measures that focus on the most vulnerable groups.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of high spatial resolution airborne and spaceborne sensors has improved the capability of ground-based data collection in the fields of agriculture, geography, geology, mineral identification, detection [2, 3], and classification [4–8]. The signal read by the sensor from a given spatial element of resolution and at a given spectral band is a mixing of components originated by the constituent substances, termed endmembers, located at that element of resolution. This chapter addresses hyperspectral unmixing, which is the decomposition of the pixel spectra into a collection of constituent spectra, or spectral signatures, and their corresponding fractional abundances indicating the proportion of each endmember present in the pixel [9, 10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. The linear mixing model holds when the mixing scale is macroscopic [13]. The nonlinear model holds when the mixing scale is microscopic (i.e., intimate mixtures) [14, 15]. The linear model assumes negligible interaction among distinct endmembers [16, 17]. The nonlinear model assumes that incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [18]. Under the linear mixing model and assuming that the number of endmembers and their spectral signatures are known, hyperspectral unmixing is a linear problem, which can be addressed, for example, under the maximum likelihood setup [19], the constrained least-squares approach [20], the spectral signature matching [21], the spectral angle mapper [22], and the subspace projection methods [20, 23, 24]. Orthogonal subspace projection [23] reduces the data dimensionality, suppresses undesired spectral signatures, and detects the presence of a spectral signature of interest. The basic concept is to project each pixel onto a subspace that is orthogonal to the undesired signatures. As shown in Settle [19], the orthogonal subspace projection technique is equivalent to the maximum likelihood estimator. This projection technique was extended by three unconstrained least-squares approaches [24] (signature space orthogonal projection, oblique subspace projection, target signature space orthogonal projection). Other works using maximum a posteriori probability (MAP) framework [25] and projection pursuit [26, 27] have also been applied to hyperspectral data. In most cases the number of endmembers and their signatures are not known. Independent component analysis (ICA) is an unsupervised source separation process that has been applied with success to blind source separation, to feature extraction, and to unsupervised recognition [28, 29]. ICA consists in finding a linear decomposition of observed data yielding statistically independent components. Given that hyperspectral data are, in given circumstances, linear mixtures, ICA comes to mind as a possible tool to unmix this class of data. In fact, the application of ICA to hyperspectral data has been proposed in reference 30, where endmember signatures are treated as sources and the mixing matrix is composed by the abundance fractions, and in references 9, 25, and 31–38, where sources are the abundance fractions of each endmember. In the first approach, we face two problems: (1) The number of samples are limited to the number of channels and (2) the process of pixel selection, playing the role of mixed sources, is not straightforward. In the second approach, ICA is based on the assumption of mutually independent sources, which is not the case of hyperspectral data, since the sum of the abundance fractions is constant, implying dependence among abundances. This dependence compromises ICA applicability to hyperspectral images. In addition, hyperspectral data are immersed in noise, which degrades the ICA performance. IFA [39] was introduced as a method for recovering independent hidden sources from their observed noisy mixtures. IFA implements two steps. First, source densities and noise covariance are estimated from the observed data by maximum likelihood. Second, sources are reconstructed by an optimal nonlinear estimator. Although IFA is a well-suited technique to unmix independent sources under noisy observations, the dependence among abundance fractions in hyperspectral imagery compromises, as in the ICA case, the IFA performance. Considering the linear mixing model, hyperspectral observations are in a simplex whose vertices correspond to the endmembers. Several approaches [40–43] have exploited this geometric feature of hyperspectral mixtures [42]. Minimum volume transform (MVT) algorithm [43] determines the simplex of minimum volume containing the data. The MVT-type approaches are complex from the computational point of view. Usually, these algorithms first find the convex hull defined by the observed data and then fit a minimum volume simplex to it. Aiming at a lower computational complexity, some algorithms such as the vertex component analysis (VCA) [44], the pixel purity index (PPI) [42], and the N-FINDR [45] still find the minimum volume simplex containing the data cloud, but they assume the presence in the data of at least one pure pixel of each endmember. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. Hyperspectral sensors collects spatial images over many narrow contiguous bands, yielding large amounts of data. For this reason, very often, the processing of hyperspectral data, included unmixing, is preceded by a dimensionality reduction step to reduce computational complexity and to improve the signal-to-noise ratio (SNR). Principal component analysis (PCA) [46], maximum noise fraction (MNF) [47], and singular value decomposition (SVD) [48] are three well-known projection techniques widely used in remote sensing in general and in unmixing in particular. The newly introduced method [49] exploits the structure of hyperspectral mixtures, namely the fact that spectral vectors are nonnegative. The computational complexity associated with these techniques is an obstacle to real-time implementations. To overcome this problem, band selection [50] and non-statistical [51] algorithms have been introduced. This chapter addresses hyperspectral data source dependence and its impact on ICA and IFA performances. The study consider simulated and real data and is based on mutual information minimization. Hyperspectral observations are described by a generative model. This model takes into account the degradation mechanisms normally found in hyperspectral applications—namely, signature variability [52–54], abundance constraints, topography modulation, and system noise. The computation of mutual information is based on fitting mixtures of Gaussians (MOG) to data. The MOG parameters (number of components, means, covariances, and weights) are inferred using the minimum description length (MDL) based algorithm [55]. We study the behavior of the mutual information as a function of the unmixing matrix. The conclusion is that the unmixing matrix minimizing the mutual information might be very far from the true one. Nevertheless, some abundance fractions might be well separated, mainly in the presence of strong signature variability, a large number of endmembers, and high SNR. We end this chapter by sketching a new methodology to blindly unmix hyperspectral data, where abundance fractions are modeled as a mixture of Dirichlet sources. This model enforces positivity and constant sum sources (full additivity) constraints. The mixing matrix is inferred by an expectation-maximization (EM)-type algorithm. This approach is in the vein of references 39 and 56, replacing independent sources represented by MOG with mixture of Dirichlet sources. Compared with the geometric-based approaches, the advantage of this model is that there is no need to have pure pixels in the observations. The chapter is organized as follows. Section 6.2 presents a spectral radiance model and formulates the spectral unmixing as a linear problem accounting for abundance constraints, signature variability, topography modulation, and system noise. Section 6.3 presents a brief resume of ICA and IFA algorithms. Section 6.4 illustrates the performance of IFA and of some well-known ICA algorithms with experimental data. Section 6.5 studies the ICA and IFA limitations in unmixing hyperspectral data. Section 6.6 presents results of ICA based on real data. Section 6.7 describes the new blind unmixing scheme and some illustrative examples. Section 6.8 concludes with some remarks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hyperspectral remote sensing exploits the electromagnetic scattering patterns of the different materials at specific wavelengths [2, 3]. Hyperspectral sensors have been developed to sample the scattered portion of the electromagnetic spectrum extending from the visible region through the near-infrared and mid-infrared, in hundreds of narrow contiguous bands [4, 5]. The number and variety of potential civilian and military applications of hyperspectral remote sensing is enormous [6, 7]. Very often, the resolution cell corresponding to a single pixel in an image contains several substances (endmembers) [4]. In this situation, the scattered energy is a mixing of the endmember spectra. A challenging task underlying many hyperspectral imagery applications is then decomposing a mixed pixel into a collection of reflectance spectra, called endmember signatures, and the corresponding abundance fractions [8–10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. Linear mixing model holds approximately when the mixing scale is macroscopic [13] and there is negligible interaction among distinct endmembers [3, 14]. If, however, the mixing scale is microscopic (or intimate mixtures) [15, 16] and the incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [17], the linear model is no longer accurate. Linear spectral unmixing has been intensively researched in the last years [9, 10, 12, 18–21]. It considers that a mixed pixel is a linear combination of endmember signatures weighted by the correspondent abundance fractions. Under this model, and assuming that the number of substances and their reflectance spectra are known, hyperspectral unmixing is a linear problem for which many solutions have been proposed (e.g., maximum likelihood estimation [8], spectral signature matching [22], spectral angle mapper [23], subspace projection methods [24,25], and constrained least squares [26]). In most cases, the number of substances and their reflectances are not known and, then, hyperspectral unmixing falls into the class of blind source separation problems [27]. Independent component analysis (ICA) has recently been proposed as a tool to blindly unmix hyperspectral data [28–31]. ICA is based on the assumption of mutually independent sources (abundance fractions), which is not the case of hyperspectral data, since the sum of abundance fractions is constant, implying statistical dependence among them. This dependence compromises ICA applicability to hyperspectral images as shown in Refs. [21, 32]. In fact, ICA finds the endmember signatures by multiplying the spectral vectors with an unmixing matrix, which minimizes the mutual information among sources. If sources are independent, ICA provides the correct unmixing, since the minimum of the mutual information is obtained only when sources are independent. This is no longer true for dependent abundance fractions. Nevertheless, some endmembers may be approximately unmixed. These aspects are addressed in Ref. [33]. Under the linear mixing model, the observations from a scene are in a simplex whose vertices correspond to the endmembers. Several approaches [34–36] have exploited this geometric feature of hyperspectral mixtures [35]. Minimum volume transform (MVT) algorithm [36] determines the simplex of minimum volume containing the data. The method presented in Ref. [37] is also of MVT type but, by introducing the notion of bundles, it takes into account the endmember variability usually present in hyperspectral mixtures. The MVT type approaches are complex from the computational point of view. Usually, these algorithms find in the first place the convex hull defined by the observed data and then fit a minimum volume simplex to it. For example, the gift wrapping algorithm [38] computes the convex hull of n data points in a d-dimensional space with a computational complexity of O(nbd=2cþ1), where bxc is the highest integer lower or equal than x and n is the number of samples. The complexity of the method presented in Ref. [37] is even higher, since the temperature of the simulated annealing algorithm used shall follow a log( ) law [39] to assure convergence (in probability) to the desired solution. Aiming at a lower computational complexity, some algorithms such as the pixel purity index (PPI) [35] and the N-FINDR [40] still find the minimum volume simplex containing the data cloud, but they assume the presence of at least one pure pixel of each endmember in the data. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. PPI algorithm uses the minimum noise fraction (MNF) [41] as a preprocessing step to reduce dimensionality and to improve the signal-to-noise ratio (SNR). The algorithm then projects every spectral vector onto skewers (large number of random vectors) [35, 42,43]. The points corresponding to extremes, for each skewer direction, are stored. A cumulative account records the number of times each pixel (i.e., a given spectral vector) is found to be an extreme. The pixels with the highest scores are the purest ones. N-FINDR algorithm [40] is based on the fact that in p spectral dimensions, the p-volume defined by a simplex formed by the purest pixels is larger than any other volume defined by any other combination of pixels. This algorithm finds the set of pixels defining the largest volume by inflating a simplex inside the data. ORA SIS [44, 45] is a hyperspectral framework developed by the U.S. Naval Research Laboratory consisting of several algorithms organized in six modules: exemplar selector, adaptative learner, demixer, knowledge base or spectral library, and spatial postrocessor. The first step consists in flat-fielding the spectra. Next, the exemplar selection module is used to select spectral vectors that best represent the smaller convex cone containing the data. The other pixels are rejected when the spectral angle distance (SAD) is less than a given thresh old. The procedure finds the basis for a subspace of a lower dimension using a modified Gram–Schmidt orthogonalizati on. The selected vectors are then projected onto this subspace and a simplex is found by an MV T pro cess. ORA SIS is oriented to real-time target detection from uncrewed air vehicles using hyperspectral data [46]. In this chapter we develop a new algorithm to unmix linear mixtures of endmember spectra. First, the algorithm determines the number of endmembers and the signal subspace using a newly developed concept [47, 48]. Second, the algorithm extracts the most pure pixels present in the data. Unlike other methods, this algorithm is completely automatic and unsupervised. To estimate the number of endmembers and the signal subspace in hyperspectral linear mixtures, the proposed scheme begins by estimating sign al and noise correlation matrices. The latter is based on multiple regression theory. The signal subspace is then identified by selectin g the set of signal eigenvalue s that best represents the data, in the least-square sense [48,49 ], we note, however, that VCA works with projected and with unprojected data. The extraction of the end members exploits two facts: (1) the endmembers are the vertices of a simplex and (2) the affine transformation of a simplex is also a simplex. As PPI and N-FIND R algorithms, VCA also assumes the presence of pure pixels in the data. The algorithm iteratively projects data on to a direction orthogonal to the subspace spanned by the endmembers already determined. The new end member signature corresponds to the extreme of the projection. The algorithm iterates until all end members are exhausted. VCA performs much better than PPI and better than or comparable to N-FI NDR; yet it has a computational complexity between on e and two orders of magnitude lower than N-FINDR. The chapter is structure d as follows. Section 19.2 describes the fundamentals of the proposed method. Section 19.3 and Section 19.4 evaluate the proposed algorithm using simulated and real data, respectively. Section 19.5 presents some concluding remarks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we introduce a formation control loop that maximizes the performance of the cooperative perception of a tracked target by a team of mobile robots, while maintaining the team in formation, with a dynamically adjustable geometry which is a function of the quality of the target perception by the team. In the formation control loop, the controller module is a distributed non-linear model predictive controller and the estimator module fuses local estimates of the target state, obtained by a particle filter at each robot. The two modules and their integration are described in detail, including a real-time database associated to a wireless communication protocol that facilitates the exchange of state data while reducing collisions among team members. Simulation and real robot results for indoor and outdoor teams of different robots are presented. The results highlight how our method successfully enables a team of homogeneous robots to minimize the total uncertainty of the tracked target cooperative estimate while complying with performance criteria such as keeping a pre-set distance between the teammates and the target, avoiding collisions with teammates and/or surrounding obstacles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

INTRODUCTION AND AIMS: Adult orthotopic liver transplantation (OLT) is associated with considerable blood product requirements. The aim of this study was to assess the ability of preoperative information to predict intraoperative red blood cell (RBC) transfusion requirements among adult liver recipients. METHODS: Preoperative variables with previously demonstrated relationships to intraoperative RBC transfusion were identified from the literature: sex, age, pathology, prothrombin time (PT), factor V, hemoglobin (Hb), and platelet count (plt). These variables were then retrospectively collected from 758 consecutive adult patients undergoing OLT from 1997 to 2007. Relationships between these variables and intraoperative blood transfusion requirements were examined by both univariate analysis and multiple linear regression analysis. RESULTS: Univariate analysis confirmed significant associations between RBC transfusion and PT, factor V, Hb, Plt, pathology, and age (P values all < .001). However, stepwise backward multivariate analysis excluded variables Plt and factor V from the multiple regression linear model. The variables included in the final predictive model were PT, Hb, age, and pathology. Patients suffering from liver carcinoma required more blood products than those suffering from other pathologies. Yet, the overall predictive power of the final model was limited (R(2) = .308; adjusted R(2) = .30). CONCLUSION: Preoperative variables have limited predictive power for intraoperative RBC transfusion requirements even when significant statistical associations exist, identifying only a small portion of the observed total transfusion variability. Preoperative PT, Hb, age, and liver pathology seem to be the most significant predictive factors but other factors like severity of liver disease, surgical technique, medical experience in liver transplantation, and other noncontrollable human variables may play important roles to determine the final transfusion requirements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this study was to analyse differences between total physical activity (TPA) and moderate-to-vigorous PA (MVPA) of pre-school children during daily school hours when they attended the physical education class (PED) and school days without PE class (NPED) and to assess the contribution of PE classes to TPA in school hours. The sample was composed of 193 pre-school healthy children (96 girls) aged from three to five years old and was conducted between February and December of 2008. Children wore accelerometers for at least four consecutive days during school hours. Data were analysed with specific software, age-specific counts-per-minute cut-off points and a 5 s epoch were used. Independent and general linear model repeated measures were used to assess differences between gender and differences between different days within each gender, respectively. Boys engaged more MVPA than girls (P < 0.05). During PED, pre-school children engaged significantly more in TPA and MVPA than during NPED (P < 0.05). PE class contributed, on average, 27.7% for the TPA and 32.8% of daily MVPA during PED in both gender. The results of this study suggest that structured PA such as a PE class increased the daily TPA and MVPA level of pre-school children.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Em Portugal o sistema de saúde assume uma importante função no desenvolvimento económico e social, na medida em que os serviços prestados pelo mesmo influenciam não só o bem-estar social como também a produtividade. O processo de contratualização alia-se ao setor público da saúde através do contrato-programa, o qual pretende estabelecer uma estratégia a seguir. O presente trabalho pretende verificar se o setor público da saúde respeita os princípios de economia, eficiência e eficácia, de um modo geral, pretende-se perceber se os contratos-programa são cumpridos na sua totalidade. Para tal procedeu-se à recolha da informação descrita nos relatórios de gestão dos quinze Hospitais que pertencem à Administração Regional de Saúde do Norte. A incerteza relacionada com os contratos-programa, a não existência de um modelo linear para a divulgação pública dos resultados no âmbito do contrato-programa, e ainda o facto de a totalidade das entidades não ser obrigada a emitir essa publicação, conduz à possibilidade de que não estejam a ser cumpridos os princípios da economia, eficácia e eficiência.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As centrais termoelétricas convencionais convertem apenas parte do combustível consumido na produção de energia elétrica, sendo que outra parte resulta em perdas sob a forma de calor. Neste sentido, surgiram as unidades de cogeração, ou Combined Heat and Power (CHP), que permitem reaproveitar a energia dissipada sob a forma de energia térmica e disponibilizá-la, em conjunto com a energia elétrica gerada, para consumo doméstico ou industrial, tornando-as mais eficientes que as unidades convencionais Os custos de produção de energia elétrica e de calor das unidades CHP são representados por uma função não-linear e apresentam uma região de operação admissível que pode ser convexa ou não-convexa, dependendo das caraterísticas de cada unidade. Por estas razões, a modelação de unidades CHP no âmbito do escalonamento de geradores elétricos (na literatura inglesa Unit Commitment Problem (UCP)) tem especial relevância para as empresas que possuem, também, este tipo de unidades. Estas empresas têm como objetivo definir, entre as unidades CHP e as unidades que apenas geram energia elétrica ou calor, quais devem ser ligadas e os respetivos níveis de produção para satisfazer a procura de energia elétrica e de calor a um custo mínimo. Neste documento são propostos dois modelos de programação inteira mista para o UCP com inclusão de unidades de cogeração: um modelo não-linear que inclui a função real de custo de produção das unidades CHP e um modelo que propõe uma linearização da referida função baseada na combinação convexa de um número pré-definido de pontos extremos. Em ambos os modelos a região de operação admissível não-convexa é modelada através da divisão desta àrea em duas àreas convexas distintas. Testes computacionais efetuados com ambos os modelos para várias instâncias permitiram verificar a eficiência do modelo linear proposto. Este modelo permitiu obter as soluções ótimas do modelo não-linear com tempos computationais significativamente menores. Para além disso, ambos os modelos foram testados com e sem a inclusão de restrições de tomada e deslastre de carga, permitindo concluir que este tipo de restrições aumenta a complexidade do problema sendo que o tempo computacional exigido para a resolução do mesmo cresce significativamente.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Informática

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For the past decade, numerous imaging techniques gave rise to remarka-ble progresses in the understanding of brain’s structure and function. Amongst the wide variety of studies onto the field of neuroscience, neuropsychiatric re-searches with resource to neuroimaging have attracted increasing attention. The present study will focus on the identification of brain areas recruited while normative subjects read sentences related to past/present or future wor-ries. Our main aim was to accurately characterize these brain areas while providing them with a time-stamp that would hopefully help us understand the implications of past/present memories and future envisioning in worrying episodes. With that purpose, functional magnetic resonance imaging data was collected from ten healthy individuals. The obtained data was processed and statistically treated using the General Linear Model and both Fixed and Ran-dom Effects Analysis for group-level results. Thereafter, a Multi-Voxel Pattern Analysis with Searchlight Mapping was performed in order to find patterns of activation that allow differentiation between conditions. The obtained results indicate higher brain activation while reading sen-tences related to past/present worries when compared to future worry or neu-tral sentences. The main areas include frontal cortex, posterior parietal, occipital and temporal areas. Worrying, per se, was characterized by activation of the medial posterior parietal cortex, left posterior occipital lobe and left central temporal lobe. With the searchlight mapping approach we were able to further identify patterns of distinction between conditions, which were located in the parietal, limbic and frontal lobes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Zero valent iron nanoparticles (nZVI) are considered very promising for the remediation of contaminated soils and groundwaters. However, an important issue related to their limited mobility remains unsolved. Direct current can be used to enhance the nanoparticles transport, based on the same principles of electrokinetic remediation. In this work, a generalized physicochemical model was developed and solved numerically to describe the nZVI transport through porous media under electric field, and with different electrolytes (with different ionic strengths). The model consists of the Nernst–Planck coupled system of equations, which accounts for the mass balance of ionic species in a fluid medium, when both the diffusion and electromigration of the ions are considered. The diffusion and electrophoretic transport of the negatively charged nZVI particles were also considered in the system. The contribution of electroosmotic flow to the overall mass transport was included in the model for all cases. The nZVI effective mobility values in the porous medium are very low (10−7–10−4 cm2 V−1 s−1), due to the counterbalance between the positive electroosmotic flow and the electrophoretic transport of the negatively charged nanoparticles. The higher the nZVI concentration is in the matrix, the higher the aggregation; therefore, low concentration of nZVI suspensions must be used for successful field application.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction This study aimed to analyze the relationship between the incidence of severe dengue during the 2008 epidemic in Rio de Janeiro, Brazil, and socioeconomic indicators, as well as indicators of health service availability and previous circulation of the dengue virus serotype-3 (DENV-3). Methods In this ecological study, the units of analysis were the districts of Rio de Janeiro. The data were incorporated into generalized linear models, and the incidence of severe dengue in each district was the outcome variable. Results The districts with more cases of dengue fever in the 2001 epidemic and a higher percentage of residents who declared their skin color or race as black had higher incidence rates of severe dengue in the 2008 epidemic [incidence rate ratio (IRR)= 1.21; 95% confidence interval (95%CI)= 1.05-1.40 and IRR= 1.34; 95%CI= 1.16-1.54, respectively]. In contrast, the districts with Family Health Strategy (FHS) clinics were more likely to have lower incidence rates of severe dengue in the 2008 epidemic (IRR= 0.81; 95%CI= 0.70-0.93). Conclusions At the ecological level, our findings suggest the persistence of health inequalities in this region of Brazil that are possibly due to greater social vulnerability among the self-declared black population. Additionally, the protective effect of FHS clinics may be due to the ease of access to other levels of care in the health system or to a reduced vulnerability to dengue transmission that is afforded by local practices to promote health.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de mestrado em Psicologia Aplicada