998 resultados para Generalized Kato Spectrum


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation is concerned with the problem of determining the dynamic characteristics of complicated engineering systems and structures from the measurements made during dynamic tests or natural excitations. Particular attention is given to the identification and modeling of the behavior of structural dynamic systems in the nonlinear hysteretic response regime. Once a model for the system has been identified, it is intended to use this model to assess the condition of the system and to predict the response to future excitations.

A new identification methodology based upon a generalization of the method of modal identification for multi-degree-of-freedom dynaimcal systems subjected to base motion is developed. The situation considered herein is that in which only the base input and the response of a small number of degrees-of-freedom of the system are measured. In this method, called the generalized modal identification method, the response is separated into "modes" which are analogous to those of a linear system. Both parametric and nonparametric models can be employed to extract the unknown nature, hysteretic or nonhysteretic, of the generalized restoring force for each mode.

In this study, a simple four-term nonparametric model is used first to provide a nonhysteretic estimate of the nonlinear stiffness and energy dissipation behavior. To extract the hysteretic nature of nonlinear systems, a two-parameter distributed element model is then employed. This model exploits the results of the nonparametric identification as an initial estimate for the model parameters. This approach greatly improves the convergence of the subsequent optimization process.

The capability of the new method is verified using simulated response data from a three-degree-of-freedom system. The new method is also applied to the analysis of response data obtained from the U.S.-Japan cooperative pseudo-dynamic test of a full-scale six-story steel-frame structure.

The new system identification method described has been found to be both accurate and computationally efficient. It is believed that it will provide a useful tool for the analysis of structural response data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

为了使得数值模拟更为精确, 采用广义非线性薛定谔方程(GNSE)描述超短激光脉冲在光子晶体光纤中的传输演化过程, 并利用二阶分步傅里叶方法通过求解方程, 数值计算了相同脉宽和能量的超短脉冲在不同色散参量的光子晶体光纤中非线性传输和超连续谱的产生。比较了超短脉冲在光纤不同色散区传输时, 高阶色散和非线性效应对超连续谱的产生以及对脉冲波形演化的影响。结果表明, 相对于超短脉冲中心波长位于光子晶体光纤的正常和反常色散区, 可以相应获得短波波段和长波波段的超连续谱输出, 当超短脉冲中心波长位于零色散波长点时, 通

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the optical transmission properties of a combined system which consists of two quantum-dot-nanocavity subsystems indirectly coupled to a waveguide in a planar photonic crystal. A Mollow-like triplet and the growth of sidebands are found, reflecting intrinsic optical responses in the complex microstructure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a wonderful conjecture of Bloch and Kato that generalizes both the analytic Class Number Formula and the Birch and Swinnerton-Dyer conjecture. The conjecture itself was generalized by Fukaya and Kato to an equivariant formulation. In this thesis, I provide a new proof for the equivariant local Tamagawa number conjecture in the case of Tate motives for unramified fields, using Iwasawa theory and (φ,Γ)-modules, and provide some work towards extending the proof to tamely ramified fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is a theoretical work on the space-time dynamic behavior of a nuclear reactor without feedback. Diffusion theory with G-energy groups is used.

In the first part the accuracy of the point kinetics (lumped-parameter description) model is examined. The fundamental approximation of this model is the splitting of the neutron density into a product of a known function of space and an unknown function of time; then the properties of the system can be averaged in space through the use of appropriate weighting functions; as a result a set of ordinary differential equations is obtained for the description of time behavior. It is clear that changes of the shape of the neutron-density distribution due to space-dependent perturbations are neglected. This results to an error in the eigenvalues and it is to this error that bounds are derived. This is done by using the method of weighted residuals to reduce the original eigenvalue problem to that of a real asymmetric matrix. Then Gershgorin-type theorems .are used to find discs in the complex plane in which the eigenvalues are contained. The radii of the discs depend on the perturbation in a simple manner.

In the second part the effect of delayed neutrons on the eigenvalues of the group-diffusion operator is examined. The delayed neutrons cause a shifting of the prompt-neutron eigenvalue s and the appearance of the delayed eigenvalues. Using a simple perturbation method this shifting is calculated and the delayed eigenvalues are predicted with good accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Planetary atmospheres exist in a seemingly endless variety of physical and chemical environments. There are an equally diverse number of methods by which we can study and characterize atmospheric composition. In order to better understand the fundamental chemistry and physical processes underlying all planetary atmospheres, my research of the past four years has focused on two distinct topics. First, I focused on the data analysis and spectral retrieval of observations obtained by the Ultraviolet Imaging Spectrograph (UVIS) instrument onboard the Cassini spacecraft while in orbit around Saturn. These observations consisted of stellar occultation measurements of Titan's upper atmosphere, probing the chemical composition in the region 300 to 1500 km above Titan's surface. I examined the relative abundances of Titan's two most prevalent chemical species, nitrogen and methane. I also focused on the aerosols that are formed through chemistry involving these two major species, and determined the vertical profiles of aerosol particles as a function of time and latitude. Moving beyond our own solar system, my second topic of investigation involved analysis of infra-red light curves from the Spitzer space telescope, obtained as it measured the light from stars hosting planets of their own. I focused on both transit and eclipse modeling during Spitzer data reduction and analysis. In my initial work, I utilized the data to search for transits of planets a few Earth masses in size. In more recent research, I analyzed secondary eclipses of three exoplanets and constrained the range of possible temperatures and compositions of their atmospheres.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the energy spectrum of fermionized bosonic atoms, which behave very much like spinless noninteracting fermions, in optical lattices by means of the perturbation expansion and the retarded Green's function method. The results show that the energy spectrum splits into two energy bands with single-occupation; the fermionized bosonic atom occupies nonvanishing energy state and left hole has a vanishing energy at any given momentum, and the system is in Mott-insulating state with a energy gap. Using the characteristic of energy spectra we obtained a criterion with which one can judge whether the Tonks-Girardeau (TG) gas is achieved or not.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the method of Green's function, we investigate the energy spectra of two-component ultracold bosonic atoms in optical lattices. We End that there are two energy bands for each component. The critical condition of the superfluid-Mott insulator phase transition is determined by the energy band structure. We also find that the nearest neighboring and on-site interactions fail to change the structure of energy bands, but shift the energy bands only. According to the conditions of the phase transitions, three stable superfluid and Mott insulating phases can be found by adjusting the experiment parameters. We also discuss the possibility of observing these new phases and their transitions in further experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the energy spectrum of ground state and quasi-particle excitation spectrum of hard-core bosons, which behave very much like spinless noninteracting fermions, in optical lattices by means of the perturbation expansion and Bogoliubov approach. The results show that the energy spectrum has a single band structure, and the energy is lower near zero momentum; the excitation spectrum gives corresponding energy gap, and the system is in Mott-insulating state at Tonks limit. The analytic result of energy spectrum is in good agreement with that calculated in terms of Green's function at strong correlation limit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate that a pattern spectrum can be decomposed into the union of hit-or-miss transforms with respect to a series of structure-element pairs. Moreover we use a Boolean-logic function to express the pattern spectrum and show that the Boolean-logic representation of a pattern spectrum is composed of hit-or-miss min terms. The optical implementation of a pattern spectrum is based on an incoherent optical correlator with a feedback operation. (C) 1996 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis an extensive study is made of the set P of all paranormal operators in B(H), the set of all bounded endomorphisms on the complex Hilbert space H. T ϵ B(H) is paranormal if for each z contained in the resolvent set of T, d(z, σ(T))//(T-zI)-1 = 1 where d(z, σ(T)) is the distance from z to σ(T), the spectrum of T. P contains the set N of normal operators and P contains the set of hyponormal operators. However, P is contained in L, the set of all T ϵ B(H) such that the convex hull of the spectrum of T is equal to the closure of the numerical range of T. Thus, NPL.

If the uniform operator (norm) topology is placed on B(H), then the relative topological properties of N, P, L can be discussed. In Section IV, it is shown that: 1) N P and L are arc-wise connected and closed, 2) N, P, and L are nowhere dense subsets of B(H) when dim H ≥ 2, 3) N = P when dimH ˂ ∞ , 4) N is a nowhere dense subset of P when dimH ˂ ∞ , 5) P is not a nowhere dense subset of L when dimH ˂ ∞ , and 6) it is not known if P is a nowhere dense subset of L when dimH ˂ ∞.

The spectral properties of paranormal operators are of current interest in the literature. Putnam [22, 23] has shown that certain points on the boundary of the spectrum of a paranormal operator are either normal eigenvalues or normal approximate eigenvalues. Stampfli [26] has shown that a hyponormal operator with countable spectrum is normal. However, in Theorem 3.3, it is shown that a paranormal operator T with countable spectrum can be written as the direct sum, N ⊕ A, of a normal operator N with σ(N) = σ(T) and of an operator A with σ(A) a subset of the derived set of σ(T). It is then shown that A need not be normal. If we restrict the countable spectrum of T ϵ P to lie on a C2-smooth rectifiable Jordan curve Go, then T must be normal [see Theorem 3.5 and its Corollary]. If T is a scalar paranormal operator with countable spectrum, then in order to conclude that T is normal the condition of σ(T) ≤ Go can be relaxed [see Theorem 3.6]. In Theorem 3.7 it is then shown that the above result is not true when T is not assumed to be scalar. It was then conjectured that if T ϵ P with σ(T) ≤ Go, then T is normal. The proof of Theorem 3.5 relies heavily on the assumption that T has countable spectrum and cannot be generalized. However, the corollary to Theorem 3.9 states that if T ϵ P with σ(T) ≤ Go, then T has a non-trivial lattice of invariant subspaces. After the completion of most of the work on this thesis, Stampfli [30, 31] published a proof that a paranormal operator T with σ(T) ≤ Go is normal. His proof uses some rather deep results concerning numerical ranges whereas the proof of Theorem 3.5 uses relatively elementary methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theory of the order-disorder transformation is developed in complete generality. The general theory is used to calculate long range order parameters, short range order parameters, energy, and phase diagrams for a face centered cubic binary alloy. The theoretical results are compared to the experimental determination of the copper-gold system, Values for the two adjustable parameters are obtained.

An explanation for the behavior of magnetic alloys is developed, Curie temperatures and magnetic moments of the first transition series elements and their alloys in both the ordered and disordered states are predicted. Experimental agreement is excellent in most cases. It is predicted that the state of order can effect the magnetic properties of an alloy to a considerable extent in alloys such as Ni3Mn. The values of the adjustable parameter used to fix the level of the Curie temperature, and the adjustable parameter that expresses the effect of ordering on the Curie temperature are obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

If E and F are saturated formations, we say that E is strongly contained in F if for any solvable group G with E-subgroup, E, and F-subgroup, F, some conjugate of E is contained in F. In this paper, we investigate the problem of finding the formations which strongly contain a fixed saturated formation E.

Our main results are restricted to formations, E, such that E = {G|G/F(G) ϵT}, where T is a non-empty formation of solvable groups, and F(G) is the Fitting subgroup of G. If T consists only of the identity, then E=N, the class of nilpotent groups, and for any solvable group, G, the N-subgroups of G are the Carter subgroups of G.

We give a characterization of strong containment which depends only on the formations E, and F. From this characterization, we prove:

If T is a non-empty formation of solvable groups, E = {G|G/F(G) ϵT}, and E is strongly contained in F, then

(1) there is a formation V such that F = {G|G/F(G) ϵV}.

(2) If for each prime p, we assume that T does not contain the class, Sp’, of all solvable p’-groups, then either E = F, or F contains all solvable groups.

This solves the problem for the Carter subgroups.

We prove the following result to show that the hypothesis of (2) is not redundant:

If R = {G|G/F(G) ϵSr’}, then there are infinitely many formations which strongly contain R.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let E be a compact subset of the n-dimensional unit cube, 1n, and let C be a collection of convex bodies, all of positive n-dimensional Lebesgue measure, such that C contains bodies with arbitrarily small measure. The dimension of E with respect to the covering class C is defined to be the number

dC(E) = sup(β:Hβ, C(E) > 0),

where Hβ, C is the outer measure

inf(Ʃm(Ci)β:UCi E, Ci ϵ C) .

Only the one and two-dimensional cases are studied. Moreover, the covering classes considered are those consisting of intervals and rectangles, parallel to the coordinate axes, and those closed under translations. A covering class is identified with a set of points in the left-open portion, 1’n, of 1n, whose closure intersects 1n - 1’n. For n = 2, the outer measure Hβ, C is adopted in place of the usual:

Inf(Ʃ(diam. (Ci))β: UCi E, Ci ϵ C),

for the purpose of studying the influence of the shape of the covering sets on the dimension dC(E).

If E is a closed set in 11, let M(E) be the class of all non-decreasing functions μ(x), supported on E with μ(x) = 0, x ≤ 0 and μ(x) = 1, x ≥ 1. Define for each μ ϵ M(E),

dC(μ) = lim/c → inf/0 log ∆μ(c)/log c , (c ϵ C)

where ∆μ(c) = v/x (μ(x+c) – μ(x)). It is shown that

dC(E) = sup (dC(μ):μ ϵ M(E)).

This notion of dimension is extended to a certain class Ӻ of sub-additive functions, and the problem of studying the behavior of dC(E) as a function of the covering class C is reduced to the study of dC(f) where f ϵ Ӻ. Specifically, the set of points in 11,

(*) {dB(F), dC(f)): f ϵ Ӻ}

is characterized by a comparison of the relative positions of the points of B and C. A region of the form (*) is always closed and doubly-starred with respect to the points (0, 0) and (1, 1). Conversely, given any closed region in 12, doubly-starred with respect to (0, 0) and (1, 1), there are covering classes B and C such that (*) is exactly that region. All of the results are shown to apply to the dimension of closed sets E. Similar results can be obtained when a finite number of covering classes are considered.

In two dimensions, the notion of dimension is extended to the class M, of functions f(x, y), non-decreasing in x and y, supported on 12 with f(x, y) = 0 for x · y = 0 and f(1, 1) = 1, by the formula

dC(f) = lim/s · t → inf/0 log ∆f(s, t)/log s · t , (s, t) ϵ C

where

∆f(s, t) = V/x, y (f(x+s, y+t) – f(x+s, y) – f(x, y+t) + f(x, t)).

A characterization of the equivalence dC1(f) = dC2(f) for all f ϵ M, is given by comparison of the gaps in the sets of products s · t and quotients s/t, (s, t) ϵ Ci (I = 1, 2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sun has the potential to power the Earth's total energy needs, but electricity from solar power still constitutes an extremely small fraction of our power generation because of its high cost relative to traditional energy sources. Therefore, the cost of solar must be reduced to realize a more sustainable future. This can be achieved by significantly increasing the efficiency of modules that convert solar radiation to electricity. In this thesis, we consider several strategies to improve the device and photonic design of solar modules to achieve record, ultrahigh (> 50%) solar module efficiencies. First, we investigate the potential of a new passivation treatment, trioctylphosphine sulfide, to increase the performance of small GaAs solar cells for cheaper and more durable modules. We show that small cells (mm2), which currently have a significant efficiency decrease (~ 5%) compared to larger cells (cm2) because small cells have a higher fraction of recombination-active surface from the sidewalls, can achieve significantly higher efficiencies with effective passivation of the sidewalls. We experimentally validate the passivation qualities of treatment by trioctylphosphine sulfide (TOP:S) through four independent studies and show that this facile treatment can enable efficient small devices. Then, we discuss our efforts toward the design and prototyping of a spectrum-splitting module that employs optical elements to divide the incident spectrum into different color bands, which allows for higher efficiencies than traditional methods. We present a design, the polyhedral specular reflector, that has the potential for > 50% module efficiencies even with realistic losses from combined optics, cell, and electrical models. Prototyping efforts of one of these designs using glass concentrators yields an optical module whose combined spectrum-splitting and concentration should correspond to a record module efficiency of 42%. Finally, we consider how the manipulation of radiatively emitted photons from subcells in multijunction architectures can be used to achieve even higher efficiencies than previously thought, inspiring both optimization of incident and radiatively emitted photons for future high efficiency designs. In this thesis work, we explore novel device and photonic designs that represent a significant departure from current solar cell manufacturing techniques and ultimately show the potential for much higher solar cell efficiencies.