528 resultados para GRAVITATION
Resumo:
We previously reported that nuclear grade assignment of prostate carcinomas is subject to a cognitive bias induced by the tumor architecture. Here, we asked whether this bias is mediated by the non-conscious selection of nuclei that "match the expectation" induced by the inadvertent glance at the tumor architecture. 20 pathologists were asked to grade nuclei in high power fields of 20 prostate carcinomas displayed on a computer screen. Unknown to the pathologists, each carcinoma was shown twice, once before a background of a low grade, tubule-rich carcinoma and once before the background of a high grade, solid carcinoma. Eye tracking allowed to identify which nuclei the pathologists fixated during the 8 second projection period. For all 20 pathologists, nuclear grade assignment was significantly biased by tumor architecture. Pathologists tended to fixate on bigger, darker, and more irregular nuclei when those were projected before kigh grade, solid carcinomas than before low grade, tubule-rich carcinomas (and vice versa). However, the morphometric differences of the selected nuclei accounted for only 11% of the architecture-induced bias, suggesting that it can only to a small part be explained by the unconscious fixation on nuclei that "match the expectation". In conclusion, selection of « matching nuclei » represents an unconscious effort to vindicate the gravitation of nuclear grades towards the tumor architecture.
Resumo:
When high-energy single-hadron production takes place inside an identified jet, there are important correlations between the fragmentation and phase-space cuts. For example, when one-hadron yields are measured in on-resonance B-factory data, a cut on the thrust event shape T is required to remove the large b-quark contribution. This leads to a dijet final-state restriction for the light-quark fragmentation process. Here, we complete our analysis of unpolarized fragmentation of (light) quarks and gluons to a light hadron h with energy fraction z in e+e−→dijet+h at the center-of-mass energy Q=10.58 GeV. In addition to the next-to-next-to-leading order resummation of the logarithms of 1−T, we include the next-to-leading order nonsingular