979 resultados para GLUCOCORTICOID-INDUCED SKIN ATROPHY
Resumo:
Hypersensitivity dermatitides (HD) are commonly seen in cats, and they are usually caused by environmental, food and/or flea allergens. Affected cats normally present with one of the following clinical reaction patterns: head and neck excoriations, usually symmetrical self-induced alopecia, eosinophilic skin lesions or miliary dermatitis. Importantly, none of these clinical presentations is considered to be pathognomonic for HD skin diseases, and the diagnosis of HD is usually based on the exclusion of other pruritic diseases and on a positive response to therapy. The objectives of this study were to propose sets of criteria for the diagnosis of nonflea-induced HD (NFHD). We recruited 501 cats with pruritus and skin lesions and compared clinical parameters between cats with NFHD (encompassing those with nonflea, nonfood HD and those with food HD), flea HD and other pruritic conditions. Using simulated annealing techniques, we established two sets of proposed criteria for the following two different clinical situations: (i) the diagnosis of NFHD in a population of pruritic cats; and (ii) the diagnosis of NFHD after exclusion of cats with flea HD. These criteria sets were associated with good sensitivity and specificity and may be useful for homogeneity of enrolment in clinical trials and to evaluate the probability of diagnosis of NFHD in clinical practice. Finally, these criteria were not useful to differentiate cats with NFHD from those with food HD.
Resumo:
Principals. Lightning is one of the most powerful and spectacular natural phenomena. Lightning strikes to humans are uncommon but can cause devastating injuries. We analyzed lightning-related admissions to our emergency department from January 2000 to December 2010 to review and highlight the main features of lightning-related injuries. Methods. All data were collected prospectively and entered in the emergency department' database (Qualicare Switzerland) and retrospectively analyzed. Results. Nine patients with lightning-related injuries presented to our emergency department. Four were female, and five were male. The most common site of injury was the nervous system (6 out of 9 patients) followed by the cardiovascular system (5 out of 9 patients). The third most common injuries occurred to the skin (3 out of 9 patients). Four of the patients had to be hospitalized for further observation. Conclusion. Reports of lightning strikes and related injuries are scarce. The establishment of an international register would therefore benefit the understanding of their injury patterns and facilitate specific treatment.
Resumo:
A 71-year-old man exhibited an acute acneiform rash affecting the face and the upper trunk about 2 weeks after starting cetuximab, an epidermal growth factor (EGF) receptor antagonist treatment for metastatic colon cancer. The skin eruption faded after stopping cetuximab and applying topical corticosteroids. The reexposure to cetuximab 3 weeks later provoked a more extended relapse of the skin rash, which then clinically and histologically corresponded to transient acantholytic dermatosis . While the acneiform cutaneous side effects of the EGF receptor antagonists are interpreted as a result of the direct interference with pilosebaceous follicle homeostasis, in this case an acrosyringium-related pathogenesis might be postulated. Applying topical corticosteroids and emollients, the cetuximab therapy could be pursued.
Resumo:
Glucocorticosteroid-induced spinal osteoporosis (GIOP) is the most frequent of all secondary types of osteoporosis. The understanding of the pathophysiology of glucocorticoid (GC) induced bone loss is of crucial importance for appropriate treatment and prevention of debilitating fractures that occur predominantly in the spine. GIOP results from depressed bone formation due to lower activity and higher death rate of osteoblasts on the one hand, and from increase bone resorption due to prolonged lifespan of osteoclasts on the other. In addition, calcium/phosphate metabolism may be disturbed through GC effects on gut, kidney, parathyroid glands and gonads. Therefore, therapeutic agents aim at restoring balanced bone cell activity by directly decreasing apoptosis rate of osteoblasts (e.g., cyclical parathyroid hormone) or by increasing apoptosis rate of osteoclasts (e.g., bisphosphonates). Other therapeutical efforts aim at maintaining/restoring calcium/phosphate homeostasis: improving intestinal calcium absorption (using calcium supplementation, vitamin D and derivates) and avoiding increased urinary calcium loss (using thiazides) prevent or counteract a secondary hyperparthyroidism. Bisphosphonates, particularly the aminobisphosphonates risedronate and alendronate, have been shown to protect patients on GCs from (further) bone loss to reduce vertebral fracture risk. Calcitonin may be of interest in situation where bisphosphonates are contraindicated or not applicable and in cases where acute pain due to vertebral fracture has to be manage. The intermittent administration of 1-34-parathormone may be an appealing treatment alternative, based on its documented anabolic effects on bone resulting from the reduction of osteoblastic apoptosis. Calcium and vitamin D should be a systematic adjunctive measure to any drug treatment for GIOP. Based on currently available evidence, fluoride, androgens, estrogens (opposed or unopposed) cannot be recommended for the prevention and treatment of GIOP. However, substitution of gonadal hormones may be indicated if GC-induced hypogonadism is present and leads to clinical symptoms. Data using the SERM raloxifene to treat or prevent GIOP are lacking, as are data using the promising bone anabolic agent strontium ranelate. Kyphoplasty performed in appropriately selected osteoporotic patients with painful vertebral fractures is a promising addition to current medical treatment.
Resumo:
Behavioural and cortisol responses of calves were used as indicators of pain to assess short- and long-term effects of three bloodless castration methods with and without local anaesthesia. Eighty calves, aged 21 to 28 days, were control handled (20) or castrated by Burdizzo (25), rubber ring (25), or crushing technique (10). Either a total volume of 10 ml of Lidocaine or NaCl was distributed in both spermatic cords and the scrotal neck. The plasma cortisol response was monitored for 72 hours, and behavioural and clinical traits over a three-month period. Castration success was assessed by degree of atrophy and histological tissue examination. The crushing technique cannot be recommended due to incomplete castration success, and the evaluation was stopped after 10 animals. Local anaesthesia reduced the level of indicators of acute pain after Burdizzo and rubber ring technique. It did, however, not result in a totally painless castration. When castration is performed at the age of 3 to 4 weeks, the rubber ring but not the Burdizzo method showed evidence of chronic pain lasting for several weeks.
Resumo:
BACKGROUND: Atopic dermatitis (AD) is based on a genetic predisposition, but environmental factors may trigger skin inflammation. According to the hygiene hypothesis, decreased exposure to microbial products in early childhood does not allow sufficient maturation of the immune system that is associated with an increased risk of atopic sensitization. OBJECTIVES: The effect of lipopolysaccharide (LPS) on the cytokine production of peripheral blood mononuclear cells (PBMC) of AD patients and nonatopic controls was studied. PATIENTS AND METHODS: PBMC were isolated from heparinized blood of 10 patients with AD and 10 nonatopic individuals, suspended in culture medium and stimulated with LPS. Cytokine levels in the supernatants were measured by immunoassays. Results Upon stimulation with LPS, PBMC from AD patients produced significantly higher amounts of tumour necrosis factor-alpha, interferon-gamma and interleukin (IL)-10 compared with control PBMC. LPS stimulation blocked the increased spontaneous production of IL-4 and IL-5 by PBMC from AD patients, but had no effect on IL-13 production. CONCLUSIONS: These results demonstrate that the effects of LPS stimulation depend on both the type of cytokine and the origin of PBMC. Endotoxin exposure is suggested to modulate the disease course of AD.
Resumo:
Glucocorticoids are anti-inflammatory steroids with important applications in the treatment of inflammatory diseases. Endogenous glucocorticoids are mainly produced by the adrenal glands, although there is increasing evidence for extra-adrenal sources. Recent findings show that intestinal crypt cells produce glucocorticoids, which contribute to the maintenance of intestinal immune homeostasis. Intestinal glucocorticoid synthesis is critically regulated by the transcription factor liver receptor homologue-1 (LRH-1). As expression of steroidogenic enzymes and LRH-1 is restricted to the proliferating cells of the crypts, we aimed to investigate the role of the cell cycle in the regulation of LRH-1 activity and intestinal glucocorticoid synthesis. We here show that either pharmacological or molecular modulation of cell cycle progression significantly inhibited expression of steroidogenic enzymes and synthesis of glucocorticoids in intestinal epithelial cells. Synchronization of intestinal epithelial cells in the cell cycle revealed that expression of steroidogenic enzymes is preferentially induced at the G(1)/S stage. Differentiation of immature intestinal epithelial cells to mature nonproliferating cells also resulted in reduced expression of steroidogenic enzymes. This cell cycle-related effect on intestinal steroidogenesis was found to be mediated through the regulation of LRH-1 transcriptional activity. This mechanism may restrict intestinal glucocorticoid synthesis to the proliferating cells of the crypts.
Resumo:
ABSTRACT: BACKGROUND: Conserved Wnt ligands are critical for signalling during development; however, various factors modulate their activity. Among these factors are the Secreted Frizzled-Related Proteins (SFRP). We previously isolated the SFRP-4 gene from an involuting rat mammary gland and later showed that transgenic mice inappropriately expressing SFRP-4 during lactation exhibited a high level of apoptosis with reduced survival of progeny. RESULTS: In order to address the questions related to the mechanism of Wnt signalling and its inhibition by SFRP-4 which we report here, we employed partially-purified Wnt-3a in a co-culture model system. Ectopic expression of SFRP-4 was accomplished by infection with a pBabepuro construct. The co-cultures comprised Line 31E mouse mammary secretory epithelial cells and Line 30F, undifferentiated, fibroblast-like mouse mammary cells. In vitro differentiation of such co-cultures can be demonstrated by induction of the beta-casein gene in response to lactogenic hormones.We show here that treatment of cells with partially-purified Wnt-3a initiates Dvl-3, Akt/PKB and GSK-3beta hyperphosphorylation and beta-catenin activation. Furthermore, while up-regulating the cyclin D1 and connexin-43 genes and elevating transepithelial resistance of Line 31E cell monolayers, Wnt-3a treatment abrogates differentiation of co-cultures in response to the lactogenic hormones prolactin, insulin and glucocorticoid. Cells which express SFRP-4, however, are largely unaffected by Wnt-3a stimulation. Since a physical association between Wnt-3a and SFRP-4 could be demonstrated with immunoprecipitation/Western blotting experiments, this interaction, presumably owing to the Frizzled homology region typical of all SFRPs, explains the refractory response to Wnt-3a which was observed. CONCLUSION: This study demonstrates that Wnt-3a treatment activates the Wnt signalling pathway and interferes with in vitro differentiation of mammary co-cultures to beta-casein production in response to lactogenic hormones. Similarly, in another measure of differentiation, following Wnt-3a treatment mammary epithelial cells could be shown to up-regulate the cyclin D1 and connexin-43 genes while phenotypically they show increased transepithelial resistance across the cell monolayer. All these behavioural changes can be blocked in mammary epithelial cells expressing SFRP-4. Thus, our data illustrate in an in vitro model a mechanism by which SFRP-4 can modulate a differentiation response to Wnt-3a.
Resumo:
The hypothalamo-pituitary-adrenal axis shows functional changes in alcoholics, with raised glucocorticoid release during alcohol intake and during the initial phase of alcohol withdrawal. Raised glucocorticoid concentrations are known to cause neuronal damage after withdrawal from chronic alcohol consumption and in other conditions. The hypothesis for these studies was that chronic alcohol treatment would have differential effects on corticosterone concentrations in plasma and in brain regions. Effects of chronic alcohol and withdrawal on regional brain corticosterone concentrations were examined using a range of standard chronic alcohol treatments in two strains of mice and in rats. Corticosterone was measured by radioimmunoassay and the identity of the corticosterone extracted from brain was verified by high performance liquid chromatography and mass spectrometry. Withdrawal from long term (3 weeks to 8 months) alcohol consumption induced prolonged increases in glucocorticoid concentrations in specific regions of rodent brain, while plasma concentrations remained unchanged. This effect was seen after alcohol administration via drinking fluid or by liquid diet, in both mice and rats and in both genders. Shorter alcohol treatments did not show the selective effect on brain glucocorticoid levels. During the alcohol consumption the regional brain corticosterone concentrations paralleled the plasma concentrations. Type II glucocorticoid receptor availability in prefrontal cortex was decreased after withdrawal from chronic alcohol consumption and nuclear localization of glucocorticoid receptors was increased, a pattern that would be predicted from enhanced glucocorticoid type II receptor activation. This novel observation of prolonged selective increases in brain glucocorticoid activity could explain important consequences of long term alcohol consumption, including memory loss, dependence and lack of hypothalamo-pituitary responsiveness. Local changes in brain glucocorticoid levels may also need to be considered in the genesis of other mental disorders and could form a potential new therapeutic target.
Resumo:
Glucocorticoids (GC) are lipophilic hormones commonly used as therapeutics in acute and chronic inflammatory disorders such as inflammatory bowel disease due to their attributed anti-inflammatory and immunosuppressive actions. Although the adrenal glands are the major source of endogenous GC, there is increasing evidence for the production of extra-adrenal GC in the brain, thymus, skin, vasculature, and the intestine. However, the physiological relevance of extra-adrenal-produced GC remains still ambiguous. Therefore, this review attracts attention to discuss possible biological benefits of extra-adrenal-synthesized GC, especially focusing on the impact of locally synthesized GC in the regulation of intestinal immune responses.
Resumo:
Despite the fact that mineralocorticoid receptor (MR) antagonist drugs such as spironolactone and eplerenone reduce the mortality in heart failure patients, there is, thus far, no unambiguous demonstration of a functional role of MR in cardiac cells. The aim of this work was to investigate the activation pathway(s) mediating corticosteroid-induced up-regulation of cardiac calcium current (ICa). In this study, using neonatal cardiomyocytes from MR or glucocorticoid receptor (GR) knockout (KO) mice, we show that MR is essential for corticosteroid-induced up-regulation of ICa. This study provides the first direct and unequivocal evidence for MR function in the heart.
Resumo:
Local hypoxia, as due to trauma, surgery, or arterial occlusive disease, may severely jeopardize the survival of the affected tissue and its wound-healing capacity. Initially developed to replace blood transfusions, artificial oxygen carriers have emerged as oxygen therapeutics in such conditions. The aim of this study was to target primary wound healing and survival in critically ischemic skin by the systemic application of left-shifted liposomal hemoglobin vesicles (HbVs). This was tested in bilateral, cranially based dorsal skin flaps in mice treated with a HbV solution with an oxygen affinity that was increased to a P(50) (partial oxygen tension at which the hemoglobin becomes 50% saturated with oxygen) of 9 mmHg. Twenty percent of the total blood volume of the HbV solution was injected immediately and 24 h after surgery. On the first postoperative day, oxygen saturation in the critically ischemic middle flap portions was increased from 23% (untreated control) to 39% in the HbV-treated animals (P < 0.05). Six days postoperatively, flap tissue survival was increased from 33% (control) to 57% (P < 0.01) and primary healing of the ischemic wound margins from 6.6 to 12.7 mm (P < 0.05) after HbV injection. In addition, higher capillary counts and endothelial nitric oxide synthase expression (both P < 0.01) were found in the immunostained flap tissue. We conclude that left-shifted HbVs may ameliorate the survival and primary wound healing in critically ischemic skin, possibly mediated by endothelial nitric oxide synthase-induced neovascularization.
Resumo:
BACKGROUND Foxi3 is a member of the large forkhead box family of transcriptional regulators, which have a wide range of biological activities including manifold developmental processes. Heterozygous mutation in Foxi3 was identified in several hairless dog breeds characterized by sparse fur coat and missing teeth. A related phenotype called hypohidrotic ectodermal dysplasia (HED) is caused by mutations in the ectodysplasin (Eda) pathway genes. RESULTS Expression of Foxi3 was strictly confined to the epithelium in developing ectodermal appendages in mouse embryos, but no expression was detected in the epidermis. Foxi3 was expressed in teeth and hair follicles throughout embryogenesis, but in mammary glands only during the earliest stages of development. Foxi3 expression was decreased and increased in Eda loss- and gain-of-function embryos, respectively, and was highly induced by Eda protein in embryonic skin explants. Also activin A treatment up-regulated Foxi3 mRNA levels in vitro. CONCLUSIONS Eda and activin A were identified as upstream regulators of Foxi3. Foxi3 is a likely transcriptional target of Eda in ectodermal appendage placodes suggesting that HED phenotype may in part be produced by compromised Foxi3 activity. In addition to hair and teeth, Foxi3 may have a role in nail, eye, and mammary, sweat, and salivary gland development.
Resumo:
While glucocorticoid (GC) administration appears to be beneficial during the acute phase of treatment of neonates at risk of developing chronic lung disease, it is still not clear whether steroid application has an adverse long-term effect on the lung maturation. Thus, the goal of the present work was to analyze GC effects on the pulmonary structure in a rat model where dosage and timing of drug administration were adapted to the therapeutic situation in human neonatology. The animals received daily a maximum of 0.1 mg dexamethasone phosphate per kilogram body weight during the first 4 postnatal days. Investigations were performed at the light microscopic level by means of a digital image analysis system. While there were no differences in the lung architecture between experimental animals and controls on day 4, the earliest time point of observation, we found a widening of airspaces with a concomitant decrease in the alveolar surface area density, representing a loss of parenchymal complexity, on days 10 and 21 in treated rats. On days 36 and 60, however, no alterations in the pulmonary parenchyma could be detected in experimental animals. We conclude from these findings that the GC-induced initial inhibition of development (days 10 and 21) was completely reversed, so that a normal parenchymal architecture and also a normal alveolar surface area density were found in adult rats (days 36 and 60). From the results obtained using the regimen of GC administration described, mimicking more closely the steroid treatment in human neonatology, we conclude that the observed short-term adverse effects on lung development can be fully compensated until adult age.
Resumo:
Psoralen plus UVA (PUVA) is used as a very effective treatment modality for various diseases, including psoriasis and cutaneous T-cell lymphoma. PUVA-induced immune suppression and/or apoptosis are thought to be responsible for the therapeutic action. However, the molecular mechanisms by which PUVA acts are not well understood. We have previously identified platelet-activating factor (PAF), a potent phospholipid mediator, as a crucial substance triggering ultraviolet B radiation-induced immune suppression. In this study, we used PAF receptor knockout mice, a selective PAF receptor antagonist, a COX-2 inhibitor (presumably blocking downstream effects of PAF), and PAF-like molecules to test the role of PAF receptor binding in PUVA treatment. We found that activation of the PAF pathway is crucial for PUVA-induced immune suppression (as measured by suppression of delayed type hypersensitivity to Candida albicans) and that it plays a role in skin inflammation and apoptosis. Downstream of PAF, interleukin-10 was involved in PUVA-induced immune suppression but not inflammation. Better understanding of PUVA's mechanisms may offer the opportunity to dissect the therapeutic from the detrimental (ie, carcinogenic) effects and/or to develop new drugs (eg, using the PAF pathway) that act like PUVA but have fewer side effects.