973 resultados para GLIAL ACTIVATION
Resumo:
Epstein-Barr virus (EBV) is associated with several types of cancers including Hodgkin's lymphoma (HL) and nasopharyngeal carcinoma (NPC). EBV-encoded latent membrane protein 1 (LMP1), a multifunctional oncoprotein, is a powerful activator of the transcription factor NF-κB, a property that is essential for EBV-transformed lymphoblastoid cell survival. Previous studies reported LMP1 sequence variations and induction of higher NF-κB activation levels compared to the prototype B95-8 LMP1 by some variants. Here we used biopsies of EBV-associated cancers and blood of individuals included in the Swiss HIV Cohort Study (SHCS) to analyze LMP1 genetic diversity and impact of sequence variations on LMP1-mediated NF-κB activation potential. We found that a number of variants mediate higher NF-κB activation levels when compared to B95-8 LMP1 and mapped three single polymorphisms responsible for this phenotype: F106Y, I124V and F144I. F106Y was present in all LMP1 isolated in this study and its effect was variant dependent, suggesting that it was modulated by other polymorphisms. The two polymorphisms I124V and F144I were present in distinct phylogenetic groups and were linked with other specific polymorphisms nearby, I152L and D150A/L151I, respectively. The two sets of polymorphisms, I124V/I152L and F144I/D150A/L151I, which were markers of increased NF-κB activation in vitro, were not associated with EBV-associated HL in the SHCS. Taken together these results highlighted the importance of single polymorphisms for the modulation of LMP1 signaling activity and demonstrated that several groups of LMP1 variants, through distinct mutational paths, mediated enhanced NF-κB activation levels compared to B95-8 LMP1.
Resumo:
Plant-based whole foods provide thousands of bioactive metabolites to the human diet that reduce the risk of developing chronic diseases. β-Caryophyllene (CAR) is a common constituent of the essential oil of numerous plants, vegetables, fruits and medicinal herbs, and has been used as a flavouring agent since the 1930 s. Here, we report the antioxidant activity of CAR, its protective effect on liver fibrosis and its inhibitory capacity on hepatic stellate cell (HSC) activation. CAR was tested for the inhibition of lipid peroxidation and as a free radical scavenger. CAR had higher inhibitory capacity on lipid peroxidation than probucol, α-humulene and α-tocopherol. Also, CAR showed high scavenging activities against hydroxyl radical and superoxide anion. The activity of 5-lipoxygenase, an enzyme that actively participates in fibrogenesis, was significantly inhibited by CAR. Carbon tetrachloride-treated rats received CAR at 2, 20 and 200 mg/kg. CAR significantly improved liver structure, and reduced fibrosis and the expression of Col1a1, Tgfb1 and Timp1 genes. Oxidative stress was used to establish a model of HSC activation with overproduction of extracellular matrix proteins. CAR (1 and 10 μm) increased cell viability and significantly reduced the expression of fibrotic marker genes. CAR, a sesquiterpene present in numerous plants and foods, is as a natural antioxidant that reduces carbon tetrachloride-mediated liver fibrosis and inhibits hepatic cell activation.
Resumo:
For decades, astrocytes have been regarded as passive partners of neurons in central nervous system (CNS) function. Studies of the last 20 years, however, challenged this view by demonstrating that astrocytes possess functional receptors for neurotransmitters and respond to their stimulation via release of gliotransmitters, including glutamate. Notably, astrocytes react to synaptically released neurotransmitters with intracellular calcium ([Ca(2+)]) elevations, which result in the release of glutamate via regulated exocytosis and, possibly, other mechanisms. These findings have led to a new concept of neuron-glia intercommunication where astrocytes play an unsuspected dynamic role by integrating neuronal inputs and modulating synaptic activity. The additional observation that glutamate release from astrocytes is controlled by molecules linked to inflammatory reactions, such as the cytokine tumor necrosis factor alpha (TNFalpha) and prostaglandins (PGs), suggests that glia-to-neuron signalling may be sensitive to changes in the production of these mediators occurring in pathological conditions. Indeed, a local, parenchymal brain inflammatory reaction (neuroinflammation) characterized by astrocytic and microglial activation has been reported in several neurodegenerative disorders, including AIDS dementia complex, Alzheimer's disease and amyotrophic lateral sclerosis. This transition may be accompanied by functional de-regulation and even degeneration of the astrocytes with the consequent disruption of the cross-talk normally occurring between these cells and neurons. Incorrect neuron-astrocyte interactions may be involved in neuronal derangement and contribute to disease development. The findings reported in this review suggest that a better comprehension of the glutamatergic interplay between neurons and astrocytes may provide information about normal brain function and also highlight potential molecular targets for therapeutic interventions in pathology.
Resumo:
PURPOSE: To evaluate whether anti-vascular endothelial growth factor (VEGF) neutralizing antibodies injected in the vitreous of rat eyes influence retinal microglia and macrophage activation. To dissociate the effect of anti-VEGF on microglia and macrophages subsequent to its antiangiogenic effect, we chose a model of acute intraocular inflammation. METHODS: Lewis rats were challenged with systemic lipopolysaccharide (LPS) injection and concomitantly received 5 µl of rat anti-VEGF-neutralizing antibody (1.5 mg/ml) in the vitreous. Rat immunoglobulin G (IgG) isotype was used as the control. The effect of anti-VEGF was evaluated at 24 and 48 h clinically (uveitis scores), biologically (cytokine multiplex analysis in ocular media), and histologically (inflammatory cell counts on eye sections). Microglia and macrophages were immunodetected with ionized calcium-binding adaptor molecule 1 (IBA1) staining and counted based on their differential shapes (round amoeboid or ramified dendritiform) on sections and flatmounted retinas using confocal imaging and automatic quantification. Activation of microglia was also evaluated with inducible nitric oxide synthase (iNOS) and IBA1 coimmunostaining. Coimmunolocalization of VEGF receptor 1 and 2 (VEGF-R1 and R2) with IBA1 was performed on eye sections with or without anti-VEGF treatment. RESULTS: Neutralizing rat anti-VEGF antibodies significantly decreased ocular VEGF levels but did not decrease the endotoxin-induced uveitis (EIU) clinical score or the number of infiltrating cells and cytokines in ocular media (interleukin [IL]-1β, IL-6, tumor necrosis factor [TNF]-α, and monocyte chemoattractant protein [MCP]-1). Eyes treated with anti-VEGF showed a significantly decreased number of activated microglia and macrophages in the retina and the choroid and decreased iNOS-positive microglia. IBA1-positive cells expressed VEGF-R1 and R2 in the inflamed retina. CONCLUSIONS: Microglia and macrophages expressed VEGF receptors, and intravitreous anti-VEGF influenced the microglia and macrophage activation state. Taking into account that anti-VEGF drugs are repeatedly injected in the vitreous of patients with retinal diseases, part of their effects could result from unsuspected modulation of the microglia activation state. This should be further studied in other ocular pathogenic conditions and human pathology.
Resumo:
Multiple Aspergillus fumigatus isolates from a patient with two aspergillomas complicating chronic pulmonary aspergillosis were pan-azole resistant. Microsatellite typing was identical for all isolates despite major phenotypic and some growth rate differences. Three different cyp51A mutations were found (G138C, Y431C, and G434C), of which the first two were demonstrated by heterologous expression in a hypersusceptible Saccharomyces cerevisiae strain to be at least partly responsible for elevated MICs. cyp51A and cyp51B gene duplication was excluded, but increased expression of cyp51A was demonstrated in three isolates selected for additional study (7-to 13-fold increases). In the isolate with the greatest cyp51A expression, an Aft1 transposon was found inserted 370 bp upstream of the start codon of the cyp51A gene, an integration location never previously demonstrated in Aspergillus. Two transcription start sites were identified at 49 and 136 bp upstream of the start codon. The role of the Aft1 transposon, if any, in modulating cyp51A expression remains to be established. Increased mRNA expression of the transporters AfuMDR1 and AfuMDR4 also was demonstrated in some isolates, which could contribute to azole resistance or simply represent a stress response. The diversity of confirmed and possible azole resistance mechanisms demonstrated in a single series of isogenic isolates is remarkable, indicating the ability of A. fumigatus to adapt in the clinical setting.
Resumo:
Invariant NKT (iNKT) cells are potent activators of DCs, NK cells, and T cells, and their antitumor activity has been well demonstrated. A single injection of the high-affinity CD1d ligand alpha-galactosylceramide (alphaGalCer) leads to short-lived iNKT cell activation followed, however, by long-term anergy, limiting its therapeutic use. In contrast, we demonstrated here that when alphaGalCer was loaded on a recombinant soluble CD1d molecule (alphaGalCer/sCD1d), repeated injections led to sustained iNKT and NK cell activation associated with IFN-gamma secretion as well as DC maturation in mice. Most importantly, when alphaGalCer/sCD1d was fused to a HER2-specific scFv antibody fragment, potent inhibition of experimental lung metastasis and established s.c. tumors was obtained when systemic treatment was started 2-7 days after the injection of HER2-expressing B16 melanoma cells. In contrast, administration of free alphaGalCer at this time had no effect. The antitumor activity of the CD1d-anti-HER2 fusion protein was associated with HER2-specific tumor localization and accumulation of iNKT, NK, and T cells at the tumor site. Targeting iNKT cells to the tumor site thus may activate a combined innate and adaptive immune response that may prove to be effective in cancer immunotherapy
Resumo:
In order to study peptide growth factor action in a three-dimensional cellular environment, aggregating cell cultures prepared from 15-day fetal rat telencephalon were grown in a chemically defined medium and treated during an early developmental stage with either bovine fibroblast growth factor (bFGF) or platelet-derived growth factor (PDGF homodimers AA and BB). A single dose (5-50 ng/ml) of either growth factor given to the cultures on day 3 greatly enhanced the developmental increase of the two glia-specific enzyme activities, 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP) and glutamine synthetase (GS), whereas it had relatively little effect on total protein and DNA content. Distinct patterns of dose-dependency were found for CNP and GS stimulation. At low concentrations of bFGF (0.5-5 ng/ml) and at all PDGF concentrations applied, the oligodendroglial marker enzyme CNP was the most affected. A relatively small but significant mitogenic effect was observed after treatment with PDGF, particularly at higher concentrations or after repetitive stimulation. The two PDGF homodimers AA and BB were similar in their biological effects and potency. The present results show that under histotypic conditions both growth factors, bFGF and PDGF, promote the maturation rather than the proliferation of immature oligodendrocytes and astrocytes.
Resumo:
OBJECTIVE Evidence from mouse models suggests that zinc-α2-glycoprotein (ZAG) is a novel anti-obesity adipokine. In humans, however, data are controversial and its physiological role in adipose tissue (AT) remains unknown. Here we explored the molecular mechanisms by which ZAG regulates carbohydrate metabolism in human adipocytes. METHODS ZAG action on glucose uptake and insulin action was analyzed. β1 and β2-adrenoreceptor (AR) antagonists and siRNA targeting PP2A phosphatase were used to examine the mechanisms by which ZAG modulates insulin sensitivity. Plasma levels of ZAG were measured in a lean patient cohort stratified for HOMA-IR. RESULTS ZAG treatment increased basal glucose uptake, correlating with an increase in GLUT expression, but induced insulin resistance in adipocytes. Pretreatment of adipocytes with propranolol and a specific β1-AR antagonist demonstrated that ZAG effects on basal glucose uptake and GLUT4 expression are mediated via β1-AR, whereas inhibition of insulin action is dependent on β2-AR activation. ZAG treatment correlated with an increase in PP2A activity. Silencing of the PP2A catalytic subunit abrogated the negative effect of ZAG on insulin-stimulated AKT phosphorylation and glucose uptake but not on GLUT4 expression and basal glucose uptake. ZAG circulating levels were unchanged in a lean patient cohort stratified for HOMA-IR. Neither glucose nor insulin was associated with plasma ZAG. CONCLUSIONS ZAG inhibits insulin-induced glucose uptake in human adipocytes by impairing insulin signaling at the level of AKT in a β2-AR- and PP2A-dependent manner.
Resumo:
TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family with potent apoptosis-inducing properties in tumor cells. In particular, TRAIL strongly synergizes with conventional chemotherapeutic drugs to induce tumor cell death. Thus, TRAIL has been proposed as a promising future cancer therapy. Little, however, is known regarding what the role of TRAIL is in normal untransformed cells and whether therapeutic administration of TRAIL, alone or in combination with other apoptotic triggers, may cause tissue damage. In this study, we investigated the role of TRAIL in Fas-induced (CD95/Apo-1-induced) hepatocyte apoptosis and liver damage. While TRAIL alone failed to induce apoptosis in isolated murine hepatocytes, it strongly amplified Fas-induced cell death. Importantly, endogenous TRAIL was found to critically regulate anti-Fas antibody-induced hepatocyte apoptosis, liver damage, and associated lethality in vivo. TRAIL enhanced anti-Fas-induced hepatocyte apoptosis through the activation of JNK and its downstream substrate, the proapoptotic Bcl-2 homolog Bim. Consistently, TRAIL- and Bim-deficient mice and wild-type mice treated with a JNK inhibitor were protected against anti-Fas-induced liver damage. We conclude that TRAIL and Bim are important response modifiers of hepatocyte apoptosis and identify liver damage and lethality as a possible risk of TRAIL-based tumor therapy.
Resumo:
The protease activity of the paracaspase Malt1 contributes to antigen receptor-mediated lymphocyte activation and lymphomagenesis. Malt1 activity is required for optimal NF-κB activation, but little is known about the responsible substrate(s). Here we report that Malt1 cleaved the NF-κB family member RelB after Arg-85. RelB cleavage induced its proteasomal degradation and specifically controlled DNA binding of RelA- or c-Rel-containing NF-κB complexes. Overexpression of RelB inhibited expression of canonical NF-κB target genes and led to impaired survival of diffuse large B-cell lymphoma cell lines characterized by constitutive Malt1 activity. These findings identify a central role for Malt1-dependent RelB cleavage in canonical NF-κB activation and thereby provide a rationale for the targeting of Malt1 in immunomodulation and cancer treatment.
Resumo:
The NLR family, pyrin domain-containing 3 (NLRP3) inflammasome is a multiprotein complex that activates caspase 1, leading to the processing and secretion of the pro-inflammatory cytokines interleukin-1beta (IL-1beta) and IL-18. The NLRP3 inflammasome is activated by a wide range of danger signals that derive not only from microorganisms but also from metabolic dysregulation. It is unclear how these highly varied stress signals can be detected by a single inflammasome. In this Opinion article, we review the different signalling pathways that have been proposed to engage the NLRP3 inflammasome and suggest a model in which one of the crucial elements for NLRP3 activation is the generation of reactive oxygen species (ROS).
Resumo:
Omega-3 fatty acids (ω-3 FAs) have potential anti-inflammatory activity in a variety of inflammatory human diseases, but the mechanisms remain poorly understood. Here we show that stimulation of macrophages with ω-3 FAs, including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and other family members, abolished NLRP3 inflammasome activation and inhibited subsequent caspase-1 activation and IL-1β secretion. In addition, G protein-coupled receptor 120 (GPR120) and GPR40 and their downstream scaffold protein β-arrestin-2 were shown to be involved in inflammasome inhibition induced by ω-3 FAs. Importantly, ω-3 FAs also prevented NLRP3 inflammasome-dependent inflammation and metabolic disorder in a high-fat-diet-induced type 2 diabetes model. Our results reveal a mechanism through which ω-3 FAs repress inflammation and prevent inflammation-driven diseases and suggest the potential clinical use of ω-3 FAs in gout, autoinflammatory syndromes, or other NLRP3 inflammasome-driven inflammatory diseases.
Resumo:
Antigen-specific T-cell activation implicates a redistribution of plasma membrane-bound molecules in lipid rafts, such as the coreceptors CD8 and CD4, the Src kinases Lek and Fyn, and the linker for activation of T cells (LAT), that results in the formation of signaling complexes. These molecules partition in lipid rafts because of palmitoylation of cytoplasmic, membrane proximal cysteines, which is essential for their functional integrity in T-cell activation. Here, we show that exogenous dipalmitoyl-phosphatidylethanolamine (DPPE), but not the related unsaturated dioleoyl-phosphatidylethanolamine (DOPE), partitions in lipid rafts. DPPE inhibits activation of CD8(+) T lymphocytes by sensitized syngeneic antigen-presenting cells or specific major histocompatibility complex (MHC) peptide tetramers, as indicated by esterase release and intracellular calcium mobilization. Cytotoxic, T lymphocyte (CTL)-target cell conjugate formation is not affected by DPPE, indicating that engagement of the T-cell receptor by its cognate ligand is intact in lipid-treated cells. In contrast to other agents known to block raft-dependent signaling, DPPE efficiently inhibits the MHC peptide-induced recruitment of palmitoylated signaling molecules to lipid rafts and CTL activation without affecting cell viability or lipid raft integrity.