984 resultados para GAS-SOURCE MBE
Resumo:
Particulate matter (PM) emissions involve a complex mixture of solid and liquid particles suspended in a gas, where it is noted that PM emissions from diesel engines are a major contributor to the ambient air pollution problem. Whilst epidemiological studies have shown a link between increased ambient PM emissions and respiratory morbidity and mortality, studies of this design are not able to identify the PM constituents responsible for driving adverse respiratory health effects. This review explores in detail the physico-chemical properties of diesel particulate matter (DPM), and identifies the constituents of this pollution source that are responsible for the development of respiratory disease. In particular, this review shows that the DPM surface area and adsorbed organic compounds play a significant role in manifesting chemical and cellular processes that if sustained can lead to the development of adverse respiratory health effects. The mechanisms of injury involved included: inflammation, innate and acquired immunity, and oxidative stress. Understanding the mechanisms of lung injury from DPM will enhance efforts to protect at-risk individuals from the harmful respiratory effects of air pollutants.
Resumo:
Purpose: To investigate the significance of sources around measurement sites, assist the development of control strategies for the important sources and mitigate the adverse effects of air pollution due to particle size. Methods: In this study, sampling was conducted at two sites located in urban/industrial and residential areas situated at roadsides along the Brisbane Urban Corridor. Ultrafine and fine particle measurements obtained at the two sites in June-July 2002 were analysed by Positive Matrix Factorization (PMF). Results: Six sources were present, including local traffic, two traffic sources, biomass burning, and two currently unidentified sources. Secondary particles had a significant impact at Site 1, while nitrates, peak traffic hours and main roads located close to the source also affected the results for both sites. Conclusions: This significant traffic corridor exemplifies the type of sources present in heavily trafficked locations and future attempts to control pollution in this type of environment could focus on the sources that were identified.
Resumo:
A pilot study has produced 31 groundwater samples from a coal seam gas (CSG) exploration well located in Maramarua, New Zealand. This paper describes sources of CSG water chemistry variations, and makes sampling and analytical recommendations to minimize these variations. The hydrochemical character of these samples is studied using factor analysis, geochemical modelling, and a sparging experiment. Factor analysis unveils carbon dioxide (CO2) degassing as the principal cause of sample variation (about 33%). Geochemical modelling corroborates these results and identifies minor precipitation of carbonate minerals with degassing. The sparging experiment confirms the effect of CO2 degassing by showing a steady rise in pH while maintaining constant alkalinity. Factor analysis correlates variations in the major ion composition (about 17%) to changes in the pumping regime and to aquifer chemistry variations due to cation exchange reactions with argillaceous minerals. An effective CSG water sampling program can be put into practice by measuring pH at the well head and alkalinity at the laboratory; these data can later be used to calculate the carbonate speciation at the time the sample was collected. In addition, TDS variations can be reduced considerably if a correct drying temperature of 180°C is consistently implemented.
Resumo:
A number of regulatory statutes provide for agreements with landowners which are given extended effect, that is, are binding upon the landowner’s successors (‘statutory agreements’). Several Queensland statutes require a project proponent to enter into a statutory agreement with a landowner before a resource development activity can be carried out on private land or by accessing private land. Provisions of Queensland’s Petroleum and Gas (Production and Safety) Act 2004 make certain types of statutory agreements binding upon successors and assigns of the landowner, but do not clearly prescribe the nature and contents of an agreement, nor require that the agreement be recorded on the land title or petroleum register. If statutory agreements are to be used for such purposes, their purpose and content should be more clearly defined by statute and they should be recorded on a searchable register.
Resumo:
Background: Hospitalisation for ambulatory care sensitive conditions (ACSHs) has become a recognised tool to measure access to primary care. Timely and effective outpatient care is highly relevant to refugee populations given the past exposure to torture and trauma, and poor access to adequate health care in their countries of origin and during flight. Little is known about ACSHs among resettled refugee populations. With the aim of examining the hypothesis that people from refugee backgrounds have higher ACSHs than people born in the country of hospitalisation, this study analysed a six-year state-wide hospital discharge dataset to estimate ACSH rates for residents born in refugee-source countries and compared them with the Australia-born population. Methods: Hospital discharge data between 1 July 1998 and 30 June 2004 from the Victorian Admitted Episodes Dataset were used to assess ACSH rates among residents born in eight refugee-source countries, and compare them with the Australia-born average. Rate ratios and 95% confidence levels were used to illustrate these comparisons. Four categories of ambulatory care sensitive conditions were measured: total, acute, chronic and vaccine-preventable. Country of birth was used as a proxy indicator of refugee status. Results: When compared with the Australia-born population, hospitalisations for total and acute ambulatory care sensitive conditions were lower among refugee-born persons over the six-year period. Chronic and vaccine-preventable ACSHs were largely similar between the two population groups. Conclusion: Contrary to our hypothesis, preventable hospitalisation rates among people born in refugee-source countries were no higher than Australia-born population averages. More research is needed to elucidate whether low rates of preventable hospitalisation indicate better health status, appropriate health habits, timely and effective care-seeking behaviour and outpatient care, or overall low levels of health care-seeking due to other more pressing needs during the initial period of resettlement. It is important to unpack dimensions of health status and health care access in refugee populations through ad-hoc surveys as the refugee population is not a homogenous group despite sharing a common experience of forced displacement and violence-related trauma.
Resumo:
Objective: To investigate whether hospital utilisation and health outcomes in Victoria differ between people born in refugee-source countries and those born in Australia. Design and setting: Analysis of a statewide hospital discharge dataset for the 6 financial years from 1 July 1998 to 30 June 2004. Hospital admissions of people born in eight countries for which the majority of entrants to Australia arrived as refugees were included in the analysis. Main outcome measures: Age-standardised rates and rate ratios for: total hospital admissions; emergency admissions; surgical admissions; total days in hospital; discharge at own risk; hospital deaths; admissions due to infectious and parasitic diseases; and admissions due to mental and behavioural disorders. Results: In 2003–04, compared with the Australia-born Victorian population, people born in refugee-source countries had lower rates of surgical admission (rate ratio [RR], 0.85; 95% CI, 0.81–0.88), total days in hospital (RR, 0.74; 95% CI, 0.73–0.75), and admission due to mental and behavioural disorders (RR, 0.70; 95% CI, 0.65–0.76). Over the 6-year period, rates of total days in hospital and rates of admission due to mental and behavioural disorders for people born in refugee-source countries increased towards Australian-born averages, while rates of total admissions, emergency admissions, and admissions due to infectious and parasitic diseases increased above the Australian-born averages. Conclusions: Use of hospital services among people born in refugee-source countries is not higher than that of the Australian-born population and shows a trend towards Australian-born averages. Our findings indicate that the Refugee and Humanitarian Program does not currently place a burden on the Australian hospital system.
Resumo:
Coal Seam Gas (CSG) production is achieved by extracting groundwater to depressurize coal seam aquifers in order to promote methane gas desorption from coal micropores. CSG waters are characteristically alkaline, have a neutral pH (~7), are of the Na-HCO3-Cl type, and exhibit brackish salinity. In 2004, a CSG exploration company carried out a gas flow test in an exploration well located in Maramarua (Waikato Region, New Zealand). This resulted in 33 water samples exhibiting noteworthy chemical variations induced by pumping. This research identifies the main causes of hydrochemical variations in CSG water, makes recommendations to manage this effect, and discusses potential environmental implications. Hydrochemical variations were studied using Factor Analysis and this was supported with hydrochemical modelling and a laboratory experiment. This reveals carbon dioxide (CO2) degassing as the principal source of hydrochemical variability (about 33%). Factor Analysis also shows that major ion variations could also reflect changes in hydrochemical composition induced by different pumping regimes. Subsequent chloride, calcium, and TDS variations could be a consequence of analytical errors potentially committed during laboratory determinations. CSG water chemical variations due to degassing during pumping can be minimized with good completion and production techniques; variations due to sample degassing can be controlled by taking precautions during sampling, transit, storage and analysis. In addition, the degassing effect observed in CSG waters can lead to an underestimation of their potential environmental effect. Calcium precipitation due to exposure to normal atmospheric pressure results in a 23% increase in SAR values from Maramarua CSG water samples.
Resumo:
Coal Seam Gas (CSG) is a form of natural gas (mainly methane) sorbed in underground coal beds. To mine this gas, wells are drilled directly into an underground coal seam and groundwater (CSG water) is pumped out to the surface. This lowers the downhole piezometric pressure and enables gas desporption from the coal matrix. In the United States, this gas has been extracted commercially since the 1980s. The economic success of US CSG projects has inspired exploration and development in Australia and New Zealand. In Australia, Queensland’s Bowen and Surat basins have been the subject of increased CSG development over the last decade. CSG growth in other Australian basins has not matured to the same level but exploration and development are taking place at an accelerated pace in the Sydney Basin (Illawarra and the Hunter Valley, NSW) and in the Gunnedah Basin. Similarly, CSG exploration in New Zealand has focused in the Waikato region (Maramarua and Huntly), in the West Coast region (Buller, Reefton, and Greymouth), and in Southland (Kaitangata, Mataura, and Ohai). Figure 1 shows a Shcoeller diagram with CSG samples from selected basins in Australia, New Zealand, and the USA. CSG water from all of these basins exhibit the same geochemical signature – low calcium, low magnesium, high bicarbonate, low sulphate and, sometimes, high chloride. This water quality is a direct result of specific biological and geological processes that have taken part in the formation of CSG. In general, these processes include the weathering of rocks (carbonates, dolomite, and halite), cation exchange with clays (responsible for enhanced sodium and depleted calcium and magnesium), and biogenic processes (accounting for the presence of high bicarbonate concentrations). The salinity of CSG waters tends to be brackish (TDS < 30000 mg/l) with a fairly neutral pH. These particular characteristics need to be taken into consideration when assessing water management and disposal alternatives. Environmental issues associated with CSG water disposal have been prominent in developed basins such as the Powder River Basin (PRB) in the United States. When disposed on the land or used for irrigation, water having a high dissolved salts content may reduce water availability to crops thus affecting crop yield. In addition, the high sodium, low calcium and low magnesium concentrations increase the potential to disperse soils and significantly reduce the water infiltration rate. Therefore, CSG waters need to be properly characterised, treated, and disposed to safeguard the environment without compromising other natural resources.
Resumo:
Nanostructured WO3 thin films have been prepared by thermal evaporation to detect hydrogen at low temperatures. The influence of heat treatment on the physical, chemical and electronic properties of these films has been investigated. The films were annealed at 400oC for 2 hours in air. AFM and TEM analysis revealed that the as-deposited WO3 film is high amorphous and made up of cluster of particles. Annealing at 400oC for 2 hours in air resulted in very fine grain size of the order of 5 nm and porous structure. GIXRD and Raman analysis revealed that annealing improved the crystallinity of WO3 film. Gas sensors based on annealed WO3 films have shown a high response towards various concentrations (10-10000 ppm) H2 at an operating temperature of 150oC. The improved sensing performance at low operating temperature is due to the optimum physical, chemical and electronic properties achieved in the WO3 film through annealing.
Resumo:
This article examines the philosophy and practice of open-source technology in the development of the jam2jam XO software for the One Laptop Per Child (OLPC) computer. It explores how open-source software principles, pragmatist philosophy, improvisation and constructionist epistemologies are operationalized in the design and development of music software, and how such reflection reveals both the strengths and weaknesses of the open-source software development paradigm. An overview of the jam2jam XO platform, its development processes and music educational uses is provided and resulting reflections on the strengths and weaknesses of open-source development for music education are discussed. From an educational and software development perspective, the act of creating open-source software is shown to be a valuable enterprise, however, just because the source code, creative content and experience design are accessible and 'open' to be changed, does not guarantee that educational practices in the use of that software will change. Research around the development and use of jam2jam XO suggests that open-source software development principles can have an impact beyond software development and on to aspects of experience design and learning relationships.
Resumo:
This special issue of the Journal of Music, Technology & Education is intended to examine ‘open source’ practices in software development and philosophical ideas as they might apply to music education. Through six different articles, the issue seeks to examine ideas on a continuum from notions of communal creativity in the shared development of ideas and systems to examining how open source technologies can be utilized within the context of music education. The idea for this special issue grew from a symposium on the same topic at the 2011 International Conference for Research in Music Education (RIME) held biennially at the University of Exeter where the editors for this edition first met. The need to continue the discussion of the issues raised at that symposium was recognized, and the editors of JMTE graciously agreed to our preparation of this special issue.
Resumo:
Atmospheric deposition is one of the most important pathways of urban stormwater pollution. Atmospheric deposition which can be in the form of either wet or dry deposition have distinct characteristics in terms of associated particulate sizes, pollutant types and influential parameters. This paper discusses the outcomes of a comprehensive research study undertaken to identify important traffic characteristics and climate factors such as antecedent dry period and rainfall characteristics which influences the characteristics of wet and dry deposition of solids and heavy metals. The outcomes confirmed that Zinc (Zn) is correlated with traffic volume whereas Lead (Pb), Cadmium (Cd), Nickel (Ni), and Copper (Cu) are correlated with traffic congestion. Consequently, reducing traffic congestion will be more effective than reducing traffic volume for improving air quality particularly in relation to Pb, Cd, Ni, and Cu. Zn was found to have the highest atmospheric deposition rate compared to other heavy metals. Zn in dry deposition is associated with relatively larger particle size fractions (>10 µm), whereas Pb, Cd, Ni and Cu are associated with relatively smaller particle size fractions (<10 µm). The analysis further revealed that bulk (wet plus dry) deposition which is correlated with rainfall depth and contains a relatively higher percentage of smaller particles compared to dry deposition which is correlated with the antecedent dry period. As particles subjected to wet deposition are smaller, they disperse over a larger area from the source of origin compared to particles subjected to dry deposition as buoyancy forces become dominant for smaller particles compared to the influence of gravity. Furthermore, exhaust emission particles were found to be primarily associated with bulk deposition compared to dry deposition particles which mainly originate from vehicle component wear.
Resumo:
Zinc oxide (ZnO) nanopyramids were synthesized by a one-pot route in a non-aqueous and surfactantfree environment. The synthesized metal oxide was characterized using SEM, XRD, and TEM to investigate the surface morphology and crystallographic phase of the nanostructures. It was observed that the ZnO nanopyramids were of uniform size and symmetrical, with a hexagonal base and height of ∼100 nm. Gas sensing characterization of the ZnO nanopyramids when deposited as thin-film onto conductometric transducers were performed towards NOx and C2H5OH vapor of different concentrations over a temperature range of 22–350 ◦C. It was observed that the sensors responded towards NO2 (10 ppm) and C2H5OH(250 ppm) analytes best at temperatures of 200 and 260 ◦C with a sensor response of 14.5 and 5.72, respectively. The sensors showed satisfactory sensitivity, repeatability as well as fast response and recovery towards both the oxidizing and the reducing analyte. The good performance was attributed to the low amount of organic impurities, large surface-to-volume ratio and high crystallinity of the solvothermally synthesized ZnO nanopyramids.