923 resultados para GAIT BIOMECHANICS
Resumo:
Universidade Estadual de Campinas. Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas. Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas. Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
PURPOSE: The ability to predict and understand which biomechanical properties of the cornea are responsible for the stability or progression of keratoconus may be an important clinical and surgical tool for the eye-care professional. We have developed a finite element model of the cornea, that tries to predicts keratoconus-like behavior and its evolution based on material properties of the corneal tissue. METHODS: Corneal material properties were modeled using bibliographic data and corneal topography was based on literature values from a schematic eye model. Commercial software was used to simulate mechanical and surface properties when the cornea was subject to different local parameters, such as elasticity. RESULTS: The simulation has shown that, depending on the corneal initial surface shape, changes in local material properties and also different intraocular pressures values induce a localized protuberance and increase in curvature when compared to the remaining portion of the cornea. CONCLUSIONS: This technique provides a quantitative and accurate approach to the problem of understanding the biomechanical nature of keratoconus. The implemented model has shown that changes in local material properties of the cornea and intraocular pressure are intrinsically related to keratoconus pathology and its shape/curvature.
Resumo:
The purposes of this study were to compare lower-limb kinematics between genders, and determine the relationships among eccentric hip abductor and lateral rotator torques and lower-limb kinematics. The movements of the pelvis, femur, and knee were calculated for 16 women and 16 men during the single-leg squat. Eccentric hip abductor and lateral rotator torques were measured using an isokinetic dynamometer. The results showed that women had greater contralateral pelvic depression, femur adduction, and knee abduction than men. The eccentric hip abductor and lateral rotator torques were correlated with coronal plane femur and knee movements in the overall sample. When the genders were analyzed separately, it was observed that women with greater eccentric hip abductor torque exhibited less femur adduction and femur medial rotation, and greater knee adduction excursion. No significant relationship was observed between the isokinetic and kinematic variables in the male group. The differences between the genders help to explain the greater rate of knee disorders observed in women. Moreover, the eccentric hip abduction action seemed to be more important in women to control the lower-limb movements.