1000 resultados para Gás liquefeito de petróleo
Resumo:
One of the most widely used physico-chemical characterizations of hydrocarbon mixtures is the determination of their boiling point distribution. Knowledge of the boiling range of crude oils and petroleum products is essential to ensure the correct specification of final products and to control refinery processes. Simulated distillation, a GC based process, has been playing this role for the past decades in the petroleum industry. The main purpose of this work is to show the fundamentals of this technique as well as its present trends.
Resumo:
Nitrogen content in natural gas was studied in experimental and computational investigations to identify its influence on the emission level of exhaust gases from combustion facilities. Changes in natural gas composition with different N2 concentrations may result from introducing a new source gas into the system. An industrial burner fired at 75 kW, housed in a laboratory-scale furnace, was employed for runs where the natural gas/N2 proportion was varied. The exhaust and in-furnace measurements of temperature and gas concentrations were performed for different combustion scenarios, varying N2 content from 1-10 %v. Results have shown that the contamination of natural gas with nitrogen reduced the peak flame temperature, the concentration of unstable species, the NO X emission level and the heat transfer rate to the furnace walls, resulting from the recombination reactions.
Resumo:
Several extraction procedures are described for the determination of exchangeable and fixed ammonium, nitrate + nitrite, total exchangeable nitrogen and total nitrogen in certified reference soils and petroleum reservoir rock samples by steam distillation and indophenol method. After improvement of the original distillation system, an increase in worker safety, a reduction in time consumption, a decrease of 73% in blank value and an analysis without ammonia loss, which could possibly occur, were achieved. The precision (RSD < 8%, n = 3) and the detection limit (9 mg kg-1 NH4+-N) are better than those of published procedures.
Resumo:
LaNiO3 perovskite was modified by partial substitution of nickel by cobalt in order to increase the stability and resistance to carbon deposition during the methane CO2 reforming. The results showed that a suitable combination of precipitation and calcination steps resulted in oxides with the desired structure and with important properties for application in heterogeneous catalysis. The partial substitution of Ni by Co resulted in lower rates of conversion of both the reactants, but the catalyst stability was highly increased. The LaNi0.3Co0.7O3 catalyst, calcined at 800 ºC, was the most active under the reaction conditions.
Resumo:
Increasing natural gas use in Brazil triggered a discussion of its role as a Hg source. We show that Hg emissions to the atmosphere from fossil fuel combustion for power generation in Brazil contribute with 6.2% (4.2 t yr-1) to the total anthropogenic Hg atmospheric emissions, with coal combustion and biomass burning as major sources. Natural gas contributes with 0.04 t yr-1, mostly from electricity generation (88%) and industrial uses (7.6%). Preliminary results on Hg concentrations in natural gas suggest that a large fraction of it is trapped during refining and transport, which may create Hg point sources between extraction and consumption.
Resumo:
The employment of local soils for extraction of metallic elements was evaluated through batch tests to treat wastewaters generated in a petroleum refinery plant in southern Brazil. Clay and organic carbon content and clay mineralogy provide these soils, in principle, with moderate metal retention capacity. The following retention order was established: Cr3+ > Pb2+ > Cu2+ > Hg2+ > Cd2+, with total amount of metals retained varying from 36 to 65 meq kg-1. The results show the high efficiency of local soils for extracting metals from liquid effluents through sorption and precipitation processes under acid pH conditions.
Resumo:
The performance of proton exchange membrane fuel cells (PEMFC) with Pt-based anodes is drastically lowered when CO-containing hydrogen is used to feed the system, because of the strong adsorption of CO on platinum. In the present work the effects of the presence of a conversion layer of CO to CO2 composed by several M/C materials (where M = Mo, Cu, Fe and W) in gas diffusion anodes formed by Pt catalysts were investigated. The diffusion layers formed by Mo/C e W/C show good CO-tolerance, and this was attributed to the CO removal by parallel occurrence of the water-gas shift reaction and the so-called bifunctional mechanism.
Resumo:
This work describes the use of clinoptilolite for removal of ammonium ions present in waters produced at the Campos' Basin. Samples were previously treated in order to remove organic compounds and metals. Experiments were run in fixed- and fluidized-bed systems, at room temperature. The fluidized-bed systems did not remove efficiently the ammonium ion. The best operational conditions were obtained with clinoptilolite particle size in the range 0.30-0.50 mm, under ascendant flow (3 mL min-1), in a fixed-bed system. The best zeolite performance was found when it was pretreated with 0.5 mol L-1 NaOH. Na+ was the most important interfering ion due to its high concentration in the water. Clinoptilolite lost partially its capacity to retain ammonium ions after several regeneration cycles with NaOH.
Resumo:
Microwave irradiation offers a clean, inexpensive, and convenient method of heating, which is an alternative way of introducing energy into chemical systems. In particular, applications of microwave irradiation technology for petroleum processing have been developed in the last twenty years. The main objective of this paper is to review the use of microwave irradiation technology as an alternative technique applied during petroleum refining and primary processing of petroleum fluids, presenting and discussing successful applications of this technology as a tool for petroleum emulsion separation and catalytic reactions normally found at hydrorefining plants.
Resumo:
A commercial corrosion inhibitor used in petroleum production was characterized by means of infrared spectroscopy and energy dispersive spectroscopy (EDS). Predicting the adsorption behavior of corrosion inhibitor onto steel, sandstone and esmectite is the key to improve working conditions. In this study, the adsorption kinetics of inhibitor formulations in HCl 15% or in Mud Acid (HCl 13,5% and ammonium bifluoride) onto steel, sandstone and esmectite was determined by means of spectrophotometry. Kinetic parameters indicated that adsorption of inhibitor in the presence of bifluoride was favored. Moreover, the adsorption constant rate was the largest when the substrate was esmectite.
Resumo:
The evaluation of uncertainty associated with an analytic result is an essential part of the measurement process. Recently, several approaches to evaluate the uncertainty in measurement have been developed. Here, the gas chromatography assay uncertainty for natural gas is compared by some of these approaches: the guide to the expression of uncertainty in measurement (GUM) approach, top-down approach (reproducibility estimate from an inter-laboratory study), Barwick & Ellison (data from validation), study of variability and fuzzy approach. The comparison shows that GUM, Barwick & Ellison and fuzzy approaches lead to comparable uncertainty evaluations, which does not happen with the top-down approach and study of variability by the absence of data normality.
Resumo:
The quantity of salts in the crude oils depends on the origin and of the wells production and these salts cause several problems during the transport and the process of refine as corrosions, incrustations and deactivation of the employed catalysts in the refineries. In this study were implemented changes for improvements in the execution of ASTM D 6470 method and has also developed a new methodology of extraction system of salts using process of mechanical agitation without heating. The results of the optimization produce larger efficiency and safety to the process compared to the traditional ASTM method.
Resumo:
This work discusses an analytical procedure for analysis of sulfur compounds in treated petroleum refinery gaseous effluents using a sulfur chemiluminescence detector with dual plasma burner (SCD-DP). Calibration was accomplished by using standards and gaseous streams of known concentration of sulfur compounds. The response factors agree with the calibration table of ASTM standard D 5504 (2008). The detection range for sulfur compounds is in μg m-3. The analytical procedure allowed the construction of a chromatographic chart of sulfur compounds present in several refinery gaseous effluents. SO2 was the most difficult compound to be determined because of its high reactivity.
Resumo:
The present paper aims to interpret the SO2 diffusion mechanism process for two different limestones: a calcite and a dolomite. In previous study, the apparent activation energies for sulfation reaction were between 3.03 and 4.45 kJ mol-1 for the calcite, and 11.24 kJ mol-1 for the dolomite. Using nitrogen porosimetry it was possible to observe that the dolomite presents mesopores of 0.03 μm, while the calcite presents mesopores of 0.01 μm. The evaluation of limestones porous structure together with their kinetic parameters, allowed concluding that the diffusion mechanism follows Fick law and Knudsen law for dolomite and calcite, respectively.
Resumo:
The present work describes the determination of polychlorinated biphenyls in 123 umbilical cord serum samples by liquid-liquid extraction method with acid hydrolyze step and analysis by GC-mECD. The analytical method was evaluated with following figures of merit for all PCBs: linearity (>0.997); precision (<12.55%); recoveries (73-119%); limit of detection (0.1 ng mL-1); limit of quantification (0.25-0.5 ng mL-1). The results showed high contamination in the analyzed samples. PCB more frequent was 138 (66.7%), followed by 180 (55.3%) and 52 (51.3%).