754 resultados para Fuzzy logic system


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper proposes a stress detection system based on fuzzy logic and the physiological signals heart rate and galvanic skin response. The main contribution of this method relies on the creation of a stress template, collecting the behaviour of previous signals under situations with a different level of stress in each individual. The creation of this template provides an accuracy of 99.5% in stress detection, improving the results obtained by current pattern recognition techniques like GMM, k-NN, SVM or Fisher Linear Discriminant. In addition, this system can be embedded in security systems to detect critical situations in accesses as cross-border control. Furthermore, its applications can be extended to other fields as vehicle driver state-of-mind management, medicine or sport training.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

La tesis doctoral CONTRIBUCIÓN AL ESTUDIO DE DOS CONCEPTOS BÁSICOS DE LA LÓGICA FUZZY constituye un conjunto de nuevas aportaciones al análisis de dos elementos básicos de la lógica fuzzy: los mecanismos de inferencia y la representación de predicados vagos. La memoria se encuentra dividida en dos partes que corresponden a los dos aspectos señalados. En la Parte I se estudia el concepto básico de «estado lógico borroso». Un estado lógico borroso es un punto fijo de la aplicación generada a partir de la regla de inferencia conocida como modus ponens generalizado. Además, un preorden borroso puede ser representado mediante los preórdenes elementales generados por el conjunto de sus estados lógicos borrosos. El Capítulo 1 está dedicado a caracterizar cuándo dos estados lógicos dan lugar al mismo preorden elemental, obteniéndose también un representante de la clase de todos los estados lógicos que generan el mismo preorden elemental. El Capítulo finaliza con la caracterización del conjunto de estados lógicos borrosos de un preorden elemental. En el Capítulo 2 se obtiene un subconjunto borroso trapezoidal como una clase de una relación de indistinguibilidad. Finalmente, el Capítulo 3 se dedica a estudiar dos tipos de estados lógicos clásicos: los irreducibles y los minimales. En el Capítulo 4, que inicia la Parte II de la memoria, se aborda el problema de obtener la función de compatibilidad de un predicado vago. Se propone un método, basado en el conocimiento del uso del predicado mediante un conjunto de reglas y de ciertos elementos distinguidos, que permite obtener una expresión general de la función de pertenencia generalizada de un subconjunto borroso que realice la función de extensión del predicado borroso. Dicho método permite, en ciertos casos, definir un conjunto de conectivas multivaluadas asociadas al predicado. En el último capítulo se estudia la representación de antónimos y sinónimos en lógica fuzzy a través de auto-morfismos. Se caracterizan los automorfismos sobre el intervalo unidad cuando sobre él se consideran dos operaciones: una t-norma y una t-conorma ambas arquimedianas. The PhD Thesis CONTRIBUCIÓN AL ESTUDIO DE DOS CONCEPTOS BÁSICOS DE LA LÓGICA FUZZY is a contribution to two basic concepts of the Fuzzy Logic. It is divided in two parts, the first is devoted to a mechanism of inference in Fuzzy Logic, and the second to the representation of vague predicates. «Fuzzy Logic State» is the basic concept in Part I. A Fuzzy Logic State is a fixed-point for the mapping giving the Generalized Modus Ponens Rule of inference. Moreover, a fuzzy preordering can be represented by the elementary preorderings generated by its Fuzzy Logic States. Chapter 1 contemplates the identity of elementary preorderings and the selection of representatives for the classes modulo this identity. This chapter finishes with the characterization of the set of Fuzzy Logic States of an elementary preordering. In Chapter 2 a Trapezoidal Fuzzy Set as a class of a relation of Indistinguishability is obtained. Finally, Chapter 3 is devoted to study two types of Classical Logic States: irreducible and minimal. Part II begins with Chapter 4 dealing with the problem of obtaining a Compa¬tibility Function for a vague predicate. When the use of a predicate is known by means of a set of rules and some distinguished elements, a method to obtain the general expression of the Membership Function is presented. This method allows, in some cases, to reach a set of multivalued connectives associated to the predicate. Last Chapter is devoted to the representation of antonyms and synonyms in Fuzzy Logic. When the unit interval [0,1] is endowed with both an archimedean t-norm and a an archi-medean t-conorm, it is showed that the automorphisms' group is just reduced to the identity function.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Walker et al. defined two families of binary operations on M (set of functions of [0,1] in [0,1]), and they determined that, under certain conditions, those operations are t-norms (triangular norm) or t-conorms on L (all the normal and convex functions of M). We define binary operations on M, more general than those given by Walker et al., and we study many properties of these general operations that allow us to deduce new t-norms and t-conorms on both L, and M.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

n recent years, the development of advanced driver assistance systems (ADAS) – mainly based on lidar and cameras – has considerably improved the safety of driving in urban environments. These systems provide warning signals for the driver in the case that any unexpected traffic circumstance is detected. The next step is to develop systems capable not only of warning the driver but also of taking over control of the car to avoid a potential collision. In the present communication, a system capable of autonomously avoiding collisions in traffic jam situations is presented. First, a perception system was developed for urban situations—in which not only vehicles have to be considered, but also pedestrians and other non-motor-vehicles (NMV). It comprises a differential global positioning system (DGPS) and wireless communication for vehicle detection, and an ultrasound sensor for NMV detection. Then, the vehicle's actuators – brake and throttle pedals – were modified to permit autonomous control. Finally, a fuzzy logic controller was implemented capable of analyzing the information provided by the perception system and of sending control commands to the vehicle's actuators so as to avoid accidents. The feasibility of the integrated system was tested by mounting it in a commercial vehicle, with the results being encouraging.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Pridneprovsky Chemical Plant was one of the largest uranium processing enterprises in the former USSR, producing a huge amount of uranium residues. The Zapadnoe tailings site contains most of these residues. We propose a theoretical framework based on multicriteria decision analysis and fuzzy logic to analyze different remediation alternatives for the Zapadnoe tailings, which simultaneously accounts for potentially conflicting economic, social and environmental objectives. We build an objective hierarchy that includes all the relevant aspects. Fuzzy rather than precise values are proposed for use to evaluate remediation alternatives against the different criteria and to quantify preferences, such as the weights representing the relative importance of criteria identified in the objective hierarchy. Finally, we suggest that remediation alternatives should be evaluated by means of a fuzzy additive multi-attribute utility function and ranked on the basis of the respective trapezoidal fuzzy number representing their overall utility.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

One of the major challenges in evolutionary robotics is constituted by the need of the robot being able to make decisions on its own, in accordance with the multiple tasks programmed, optimizing its timings and power. In this paper, we present a new automatic decision making mechanism for a robot guide that allows the robot to make the best choice in order to reach its aims, performing its tasks in an optimal way. The election of which is the best alternative is based on a series of criteria and restrictions of the tasks to perform. The software developed in the project has been verified on the tour-guide robot Urbano. The most important aspect of this proposal is that the design uses learning as the means to optimize the quality in the decision making. The modeling of the quality index of the best choice to perform is made using fuzzy logic and it represents the beliefs of the robot, which continue to evolve in order to match the "external reality”. This fuzzy system is used to select the most appropriate set of tasks to perform during the day. With this tool, the tour guide-robot prepares its agenda daily, which satisfies the objectives and restrictions, and it identifies the best task to perform at each moment. This work is part of the ARABOT project of the Intelligent Control Research Group at the Universidad Politécnica de Madrid to create "awareness" in a robot guide.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

El auge del "Internet de las Cosas" (IoT, "Internet of Things") y sus tecnologías asociadas han permitido su aplicación en diversos dominios de la aplicación, entre los que se encuentran la monitorización de ecosistemas forestales, la gestión de catástrofes y emergencias, la domótica, la automatización industrial, los servicios para ciudades inteligentes, la eficiencia energética de edificios, la detección de intrusos, la gestión de desastres y emergencias o la monitorización de señales corporales, entre muchas otras. La desventaja de una red IoT es que una vez desplegada, ésta queda desatendida, es decir queda sujeta, entre otras cosas, a condiciones climáticas cambiantes y expuestas a catástrofes naturales, fallos de software o hardware, o ataques maliciosos de terceros, por lo que se puede considerar que dichas redes son propensas a fallos. El principal requisito de los nodos constituyentes de una red IoT es que estos deben ser capaces de seguir funcionando a pesar de sufrir errores en el propio sistema. La capacidad de la red para recuperarse ante fallos internos y externos inesperados es lo que se conoce actualmente como "Resiliencia" de la red. Por tanto, a la hora de diseñar y desplegar aplicaciones o servicios para IoT, se espera que la red sea tolerante a fallos, que sea auto-configurable, auto-adaptable, auto-optimizable con respecto a nuevas condiciones que puedan aparecer durante su ejecución. Esto lleva al análisis de un problema fundamental en el estudio de las redes IoT, el problema de la "Conectividad". Se dice que una red está conectada si todo par de nodos en la red son capaces de encontrar al menos un camino de comunicación entre ambos. Sin embargo, la red puede desconectarse debido a varias razones, como que se agote la batería, que un nodo sea destruido, etc. Por tanto, se hace necesario gestionar la resiliencia de la red con el objeto de mantener la conectividad entre sus nodos, de tal manera que cada nodo IoT sea capaz de proveer servicios continuos, a otros nodos, a otras redes o, a otros servicios y aplicaciones. En este contexto, el objetivo principal de esta tesis doctoral se centra en el estudio del problema de conectividad IoT, más concretamente en el desarrollo de modelos para el análisis y gestión de la Resiliencia, llevado a la práctica a través de las redes WSN, con el fin de mejorar la capacidad la tolerancia a fallos de los nodos que componen la red. Este reto se aborda teniendo en cuenta dos enfoques distintos, por una parte, a diferencia de otro tipo de redes de dispositivos convencionales, los nodos en una red IoT son propensos a perder la conexión, debido a que se despliegan en entornos aislados, o en entornos con condiciones extremas; por otra parte, los nodos suelen ser recursos con bajas capacidades en términos de procesamiento, almacenamiento y batería, entre otros, por lo que requiere que el diseño de la gestión de su resiliencia sea ligero, distribuido y energéticamente eficiente. En este sentido, esta tesis desarrolla técnicas auto-adaptativas que permiten a una red IoT, desde la perspectiva del control de su topología, ser resiliente ante fallos en sus nodos. Para ello, se utilizan técnicas basadas en lógica difusa y técnicas de control proporcional, integral y derivativa (PID - "proportional-integral-derivative"), con el objeto de mejorar la conectividad de la red, teniendo en cuenta que el consumo de energía debe preservarse tanto como sea posible. De igual manera, se ha tenido en cuenta que el algoritmo de control debe ser distribuido debido a que, en general, los enfoques centralizados no suelen ser factibles a despliegues a gran escala. El presente trabajo de tesis implica varios retos que conciernen a la conectividad de red, entre los que se incluyen: la creación y el análisis de modelos matemáticos que describan la red, una propuesta de sistema de control auto-adaptativo en respuesta a fallos en los nodos, la optimización de los parámetros del sistema de control, la validación mediante una implementación siguiendo un enfoque de ingeniería del software y finalmente la evaluación en una aplicación real. Atendiendo a los retos anteriormente mencionados, el presente trabajo justifica, mediante una análisis matemático, la relación existente entre el "grado de un nodo" (definido como el número de nodos en la vecindad del nodo en cuestión) y la conectividad de la red, y prueba la eficacia de varios tipos de controladores que permiten ajustar la potencia de trasmisión de los nodos de red en respuesta a eventuales fallos, teniendo en cuenta el consumo de energía como parte de los objetivos de control. Así mismo, este trabajo realiza una evaluación y comparación con otros algoritmos representativos; en donde se demuestra que el enfoque desarrollado es más tolerante a fallos aleatorios en los nodos de la red, así como en su eficiencia energética. Adicionalmente, el uso de algoritmos bioinspirados ha permitido la optimización de los parámetros de control de redes dinámicas de gran tamaño. Con respecto a la implementación en un sistema real, se han integrado las propuestas de esta tesis en un modelo de programación OSGi ("Open Services Gateway Initiative") con el objeto de crear un middleware auto-adaptativo que mejore la gestión de la resiliencia, especialmente la reconfiguración en tiempo de ejecución de componentes software cuando se ha producido un fallo. Como conclusión, los resultados de esta tesis doctoral contribuyen a la investigación teórica y, a la aplicación práctica del control resiliente de la topología en redes distribuidas de gran tamaño. Los diseños y algoritmos presentados pueden ser vistos como una prueba novedosa de algunas técnicas para la próxima era de IoT. A continuación, se enuncian de forma resumida las principales contribuciones de esta tesis: (1) Se han analizado matemáticamente propiedades relacionadas con la conectividad de la red. Se estudia, por ejemplo, cómo varía la probabilidad de conexión de la red al modificar el alcance de comunicación de los nodos, así como cuál es el mínimo número de nodos que hay que añadir al sistema desconectado para su re-conexión. (2) Se han propuesto sistemas de control basados en lógica difusa para alcanzar el grado de los nodos deseado, manteniendo la conectividad completa de la red. Se han evaluado diferentes tipos de controladores basados en lógica difusa mediante simulaciones, y los resultados se han comparado con otros algoritmos representativos. (3) Se ha investigado más a fondo, dando un enfoque más simple y aplicable, el sistema de control de doble bucle, y sus parámetros de control se han optimizado empleando algoritmos heurísticos como el método de la entropía cruzada (CE, "Cross Entropy"), la optimización por enjambre de partículas (PSO, "Particle Swarm Optimization"), y la evolución diferencial (DE, "Differential Evolution"). (4) Se han evaluado mediante simulación, la mayoría de los diseños aquí presentados; además, parte de los trabajos se han implementado y validado en una aplicación real combinando técnicas de software auto-adaptativo, como por ejemplo las de una arquitectura orientada a servicios (SOA, "Service-Oriented Architecture"). ABSTRACT The advent of the Internet of Things (IoT) enables a tremendous number of applications, such as forest monitoring, disaster management, home automation, factory automation, smart city, etc. However, various kinds of unexpected disturbances may cause node failure in the IoT, for example battery depletion, software/hardware malfunction issues and malicious attacks. So, it can be considered that the IoT is prone to failure. The ability of the network to recover from unexpected internal and external failures is known as "resilience" of the network. Resilience usually serves as an important non-functional requirement when designing IoT, which can further be broken down into "self-*" properties, such as self-adaptive, self-healing, self-configuring, self-optimization, etc. One of the consequences that node failure brings to the IoT is that some nodes may be disconnected from others, such that they are not capable of providing continuous services for other nodes, networks, and applications. In this sense, the main objective of this dissertation focuses on the IoT connectivity problem. A network is regarded as connected if any pair of different nodes can communicate with each other either directly or via a limited number of intermediate nodes. More specifically, this thesis focuses on the development of models for analysis and management of resilience, implemented through the Wireless Sensor Networks (WSNs), which is a challenging task. On the one hand, unlike other conventional network devices, nodes in the IoT are more likely to be disconnected from each other due to their deployment in a hostile or isolated environment. On the other hand, nodes are resource-constrained in terms of limited processing capability, storage and battery capacity, which requires that the design of the resilience management for IoT has to be lightweight, distributed and energy-efficient. In this context, the thesis presents self-adaptive techniques for IoT, with the aim of making the IoT resilient against node failures from the network topology control point of view. The fuzzy-logic and proportional-integral-derivative (PID) control techniques are leveraged to improve the network connectivity of the IoT in response to node failures, meanwhile taking into consideration that energy consumption must be preserved as much as possible. The control algorithm itself is designed to be distributed, because the centralized approaches are usually not feasible in large scale IoT deployments. The thesis involves various aspects concerning network connectivity, including: creation and analysis of mathematical models describing the network, proposing self-adaptive control systems in response to node failures, control system parameter optimization, implementation using the software engineering approach, and evaluation in a real application. This thesis also justifies the relations between the "node degree" (the number of neighbor(s) of a node) and network connectivity through mathematic analysis, and proves the effectiveness of various types of controllers that can adjust power transmission of the IoT nodes in response to node failures. The controllers also take into consideration the energy consumption as part of the control goals. The evaluation is performed and comparison is made with other representative algorithms. The simulation results show that the proposals in this thesis can tolerate more random node failures and save more energy when compared with those representative algorithms. Additionally, the simulations demonstrate that the use of the bio-inspired algorithms allows optimizing the parameters of the controller. With respect to the implementation in a real system, the programming model called OSGi (Open Service Gateway Initiative) is integrated with the proposals in order to create a self-adaptive middleware, especially reconfiguring the software components at runtime when failures occur. The outcomes of this thesis contribute to theoretic research and practical applications of resilient topology control for large and distributed networks. The presented controller designs and optimization algorithms can be viewed as novel trials of the control and optimization techniques for the coming era of the IoT. The contributions of this thesis can be summarized as follows: (1) Mathematically, the fault-tolerant probability of a large-scale stochastic network is analyzed. It is studied how the probability of network connectivity depends on the communication range of the nodes, and what is the minimum number of neighbors to be added for network re-connection. (2) A fuzzy-logic control system is proposed, which obtains the desired node degree and in turn maintains the network connectivity when it is subject to node failures. There are different types of fuzzy-logic controllers evaluated by simulations, and the results demonstrate the improvement of fault-tolerant capability as compared to some other representative algorithms. (3) A simpler but more applicable approach, the two-loop control system is further investigated, and its control parameters are optimized by using some heuristic algorithms such as Cross Entropy (CE), Particle Swarm Optimization (PSO), and Differential Evolution (DE). (4) Most of the designs are evaluated by means of simulations, but part of the proposals are implemented and tested in a real-world application by combining the self-adaptive software technique and the control algorithms which are presented in this thesis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

El análisis de las diferentes alternativas en la planificación y diseño de corredores y trazados de carreteras debe basarse en la correcta definición de variables territoriales que sirvan como criterios para la toma de decisión y esto requiere un análisis ambiental preliminar de esas variables de calidad. En España, los estudios de viabilidad de nuevas carreteras y autovías están asociados a una fase del proceso de decisión que se corresponde con el denominado Estudio Informativo, el cual establece condicionantes físicos, ambientales, de uso del suelo y culturales que deben ser considerados en las primeras fases de la definición del trazado de un corredor de carretera. Así, la metodología más frecuente es establecer diferentes niveles de capacidad de acogida del territorio en el área de estudio con el fin de resumir las variables territoriales en mapas temáticos y facilitar el proceso de trazado de las alternativas de corredores de carretera. El paisaje es un factor limitante a tener en cuenta en la planificación y diseño de carreteras y, por tanto, deben buscarse trazados más sostenibles en relación con criterios estéticos y ecológicos del mismo. Pero este factor no es frecuentemente analizado en los Estudios Informativos e incluso, si es considerado, los estudios específicos de la calidad del paisaje (estético y ecológico) y de las formas del terreno no incorporan las recomendaciones de las guías de trazado para evitar o reducir los impactos en el paisaje. Además, los mapas de paisaje que se generan en este tipo de estudios no se corresponden con la escala de desarrollo del Estudio Informativo (1:5.000). Otro déficit común en planificación de corredores y trazados de carreteras es que no se tiene en cuenta la conectividad del paisaje durante el proceso de diseño de la carretera para prevenir la afección a los corredores de fauna existentes en el paisaje. Este déficit puede originar un posterior efecto barrera en los movimientos dispersivos de la fauna y la fragmentación de sus hábitats debido a la ocupación parcial o total de las teselas de hábitats con importancia biológica para la fauna (o hábitats focales) y a la interrupción de los corredores de fauna que concentran esos movimientos dispersivos de la fauna entre teselas. El objetivo principal de esta tesis es mejorar el estudio del paisaje para prevenir su afección durante el proceso de trazado de carreteras, facilitar la conservación de los corredores de fauna (o pasillos verdes) y la localización de medidas preventivas y correctoras en términos de selección y cuantificación de factores de idoneidad a fin de reducir los impactos visuales y ecológicos en el paisaje a escala local. Concretamente, la incorporación de valores cuantitativos y bien justificados en el proceso de decisión permite incrementar la transparencia en el proceso de diseño de corredores y trazados de carreteras. Con este fin, se han planteado cuatro preguntas específicas en esta investigación (1) ¿Cómo se seleccionan y evalúan los factores territoriales limitantes para localizar una nueva carretera por los profesionales españoles de planificación del territorio en relación con el paisaje? (2) ¿Cómo pueden ser definidos los corredores de fauna a partir de factores del paisaje que influyen en los movimientos dispersivos de la fauna? (3) ¿Cómo pueden delimitarse y evaluarse los corredores de fauna incluyendo el comportamiento parcialmente errático en los movimientos dispersivos de la fauna y el efecto barrera de los elementos antrópicos a una escala local? (4) ¿Qué y cómo las recomendaciones de diseño de carreteras relacionadas con el paisaje y las formas del terreno pueden ser incluidas en un modelo de Sistemas de Información Geográfica (SIG) para ayudar a los ingenieros civiles durante el proceso de diseño de un trazado de carreteras bajo el punto de vista de la sostenibilidad?. Esta tesis doctoral propone nuevas metodologías que mejoran el análisis visual y ecológico del paisaje utilizando indicadores y modelos SIG para obtener alternativas de trazado que produzcan un menor impacto en el paisaje. Estas metodologías fueron probadas en un paisaje heterogéneo con una alta tasa de densidad de corzo (Capreolus capreolus L.), uno de los grandes mamíferos más atropellados en la red de carreteras españolas, y donde está planificada la construcción de una nueva autovía que atravesará la mitad del área de distribución del corzo. Inicialmente, se han analizado las variables utilizadas en 22 estudios de proyectos de planificación de corredores de carreteras promovidos por el Ministerio de Fomento entre 2006 y 2008. Estas variables se agruparon según condicionantes físicos, ambientales, de usos del suelo y culturales con el fin de comparar los valores asignados de capacidad de acogida del territorio a cada variable en los diferentes estudios revisados. Posteriormente, y como etapa previa de un análisis de conectividad, se construyó un mapa de resistencia de los movimientos dispersivos del corzo en base a la literatura y al juicio de expertos. Usando esta investigación como base, se le asignó un valor de resistencia a cada factor seleccionado para construir la matriz de resistencia, ponderándolo y combinándolo con el resto de factores usando el proceso analítico jerárquico y los operadores de lógica difusa como métodos de análisis multicriterio. Posteriormente, se diseñó una metodología SIG para delimitar claramente la extensión física de los corredores de fauna de acuerdo a un valor umbral de ancho geométrico mínimo, así como la existencia de múltiples potenciales conexiones entre cada par de teselas de hábitats presentes en el paisaje estudiado. Finalmente, se realizó un procesado de datos Light Detection and Ranging (LiDAR) y un modelo SIG para calcular la calidad del paisaje (estético y ecológico), las formas del terreno que presentan características similares para trazar una carretera y la acumulación de vistas de potenciales conductores y observadores de los alrededores de la nueva vía. Las principales contribuciones de esta investigación al conocimiento científico existente en el campo de la evaluación del impacto ambiental en relación al diseño de corredores y trazados de carreteras son cuatro. Primero, el análisis realizado de 22 Estudios Informativos de planificación de carreteras reveló que los métodos aplicados por los profesionales para la evaluación de la capacidad de acogida del territorio no fue suficientemente estandarizada, ya que había una falta de uniformidad en el uso de fuentes cartográficas y en las metodologías de evaluación de la capacidad de acogida del territorio, especialmente en el análisis de la calidad del paisaje estético y ecológico. Segundo, el análisis realizado en esta tesis destaca la importancia de los métodos multicriterio para estructurar, combinar y validar factores que limitan los movimientos dispersivos de la fauna en el análisis de conectividad. Tercero, los modelos SIG desarrollados Generador de alternativas de corredores o Generator of Alternative Corridors (GAC) y Eliminador de Corredores Estrechos o Narrow Corridor Eraser (NCE) pueden ser aplicados sistemáticamente y sobre una base científica en análisis de conectividad como una mejora de las herramientas existentes para la comprensión el paisaje como una red compuesta por nodos y enlaces interconectados. Así, ejecutando los modelos GAC y NCE de forma iterativa, pueden obtenerse corredores alternativos con similar probabilidad de ser utilizados por la fauna y sin que éstos presenten cuellos de botella. Cuarto, el caso de estudio llevado a cabo de prediseño de corredores y trazado de una nueva autovía ha sido novedoso incluyendo una clasificación semisupervisada de las formas del terreno, filtrando una nube de puntos LiDAR e incluyendo la nueva geometría 3D de la carretera en el Modelo Digital de Superficie (MDS). El uso combinado del procesamiento de datos LiDAR y de índices y clasificaciones geomorfológicas puede ayudar a los responsables encargados en la toma de decisiones a evaluar qué alternativas de trazado causan el menor impacto en el paisaje, proporciona una visión global de los juicios de valor más aplicados y, en conclusión, define qué medidas de integración paisajística correctoras deben aplicarse y dónde. ABSTRACT The assessment of different alternatives in road-corridor planning and layout design must be based on a number of well-defined territorial variables that serve as decision-making criteria, and this requires a high-quality preliminary environmental analysis of those quality variables. In Spain, feasibility studies for new roads and motorways are associated to a phase of the decision procedure which corresponds with the one known as the Informative Study, which establishes the physical, environmental, land-use and cultural constraints to be considered in the early stages of defining road corridor layouts. The most common methodology is to establish different levels of Territorial Carrying Capacity (TCC) in the study area in order to summarize the territorial variables on thematic maps and facilitate the tracing process of road-corridor layout alternatives. Landscape is a constraint factor that must be considered in road planning and design, and the most sustainable layouts should be sought based on aesthetic and ecological criteria. However this factor is not often analyzed in Informative Studies and even if it is, baseline studies on landscape quality (aesthetic and ecological) and landforms do not usually include the recommendations of road tracing guides designed to avoid or reduce impacts on the landscape. The resolution of the landscape maps produced in this type of studies does not comply with the recommended road design scale (1:5,000) in the regulations for the Informative Study procedure. Another common shortcoming in road planning is that landscape ecological connectivity is not considered during road design in order to avoid affecting wildlife corridors in the landscape. In the prior road planning stage, this issue could lead to a major barrier effect for fauna dispersal movements and to the fragmentation of their habitat due to the partial or total occupation of habitat patches of biological importance for the fauna (or focal habitats), and the interruption of wildlife corridors that concentrate fauna dispersal movements between patches. The main goal of this dissertation is to improve the study of the landscape and prevent negative effects during the road tracing process, and facilitate the preservation of wildlife corridors (or green ways) and the location of preventive and corrective measures by selecting and quantifying suitability factors to reduce visual and ecological landscape impacts at a local scale. Specifically the incorporation of quantitative and well-supported values in the decision-making process provides increased transparency in the road corridors and layouts design process. Four specific questions were raised in this research: (1) How are territorial constraints selected and evaluated in terms of landscape by Spanish land-planning practitioners before locating a new road? (2) How can wildlife corridors be defined based on the landscape factors influencing the dispersal movements of fauna? (3) How can wildlife corridors be delimited and assessed to include the partially erratic movements of fauna and the barrier effect of the anthropic elements at a local scale? (4) How recommendations of road design related to landscape and landforms can be included in a Geographic Information System (GIS) model to aid civil engineers during the road layout design process and support sustainable development? This doctoral thesis proposes new methodologies that improve the assessment of the visual and ecological landscape character using indicators and GIS models to obtain road layout alternatives with a lower impact on the landscape. These methodologies were tested on a case study of a heterogeneous landscape with a high density of roe deer (Capreolus capreolus L.) –one of the large mammals most commonly hit by vehicles on the Spanish road network– and where a new motorway is planned to pass through the middle of their distribution area. We explored the variables used in 22 road-corridor planning projects sponsored by the Ministry of Public Works between 2006 and 2008. These variables were grouped into physical, environmental, land-use and cultural constraints for the purpose of comparing the TCC values assigned to each variable in the various studies reviewed. As a prior stage in a connectivity analysis, a map of resistance to roe deer dispersal movements was created based on the literature and experts judgment. Using this research as a base, each factor selected to build the matrix was assigned a resistance value and weighted and combined with the rest of the factors using the analytic hierarchy process (AHP) and fuzzy logic operators as multicriteria assessment (MCA) methods. A GIS methodology was designed to clearly delimit the physical area of wildlife corridors according to a geometric threshold width value, and the multiple potential connections between each pair of habitat patches in the landscape. A Digital Surface Model Light Detection and Ranging (LiDAR) dataset processing and a GIS model was performed to determine landscape quality (aesthetic and ecological) and landforms with similar characteristics for the road layout, and the cumulative viewshed of potential drivers and observers in the area surrounding the new motorway. The main contributions of this research to current scientific knowledge in the field of environmental impact assessment for road corridors and layouts design are four. First, the analysis of 22 Informative Studies on road planning revealed that the methods applied by practitioners for assessing the TCC were not sufficiently standardized due to the lack of uniformity in the cartographic information sources and the TCC valuation methodologies, especially in the analysis of the aesthetic and ecological quality of the landscape. Second, the analysis in this dissertation highlights the importance of multicriteria methods to structure, combine and validate factors that constrain wildlife dispersal movements in the connectivity analysis. Third, the “Generator of Alternative Corridors (GAC)” and “Narrow Corridor Eraser (NCE)” GIS models developed can be applied systematically and on a scientific basis in connectivity analyses to improve existing tools and understand landscape as a network composed of interconnected nodes and links. Thus, alternative corridors with similar probability of use by fauna and without bottlenecks can be obtained by iteratively running GAC and NCE models. Fourth, our case study of new motorway corridors and layouts design innovatively included semi-supervised classification of landforms, filtering of LiDAR point clouds and new 3D road geometry on the Digital Surface Model (DSM). The combined used of LiDAR data processing and geomorphological indices and classifications can help decision-makers assess which road layouts produce lower impacts on the landscape, provide an overall insight into the most commonly applied value judgments, and in conclusion, define which corrective measures should be applied in terms of landscaping, and where.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

El objetivo de esta tesis fin de máster es la construcción mediante técnicas evolutivas de bases de conocimiento con reglas difusas para desarrollar un sistema autónomo que sea capaz de jugar con destreza a un videojuego de lucha en 2D. El uso de la lógica difusa permite manejar imprecisión, la cual está implícita en las variables de entrada al sistema y favorece la comprensión a nivel humano del comportamiento general del controlador. Se ha diseñado, para obtener la base de conocimiento que permita al sistema tomar las decisiones adecuadas durante el combate, un nuevo operador para algoritmos evolutivos. Se ha observado que la programación genética guiada por gramáticas (PGGG) muestra un sesgo debido al cruce que se suele emplear para obtener nuevos individuos en el proceso evolutivo. Para solventar este problema, se propone el método de sedimentación, capaz de evitar la tendencia que tiene la PGGG a generar bases de conocimiento con pocas reglas, de forma independiente a la gramática. Este método se inspira en la sedimentación que se produce en el fondo de los lechos marinos y permite obtener un sustrato de reglas óptimas que forman la solución final una vez que converge el algoritmo.---ABSTRACT---The objective of this thesis is the construction by evolutionary techniques of fuzzy rule-base system to develop an autonomous controller capable of playing a 2D fighting game. The use of fuzzy logic handles imprecision, which is implicit in the input variables of the system and makes the behavior of the controller easier to understand by humans. A new operator for evolutionary algorithms is designed to obtain the knowledge base that allows the system to take appropriate decision during combat. It has been observed that the grammar guided genetic programming (GGGP) shows a bias due to the crossing that is often used for obtaining new individuals in the evolutionary process. To solve this problem, the sedimentation method, able to avoid the tendency of the PGGG to generate knowledge bases with few rules, independently of the grammar is proposed. This method is inspired by the sedimentation that occurs on the bottom of the seabed and creates an optimal rules substrate that ends on the final solution once the algorithm converges.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Pridneprovsky Chemical Plant was a largest uranium processing enterprises, producing a huge amount of uranium residues. The Zapadnoe tailings site contains the majority of these residues. We propose a theoretical framework based on Multi-Criteria Decision Analysis and fuzzy logic to analyse different remediation alternatives for the Zapadnoe tailings, in which potentially conflicting economic, radiological, social and environmental objectives are simultaneously taken into account. An objective hierarchy is built that includes all the relevant aspects. Fuzzy rather than precise values are proposed for use to evaluate remediation alternatives against the different criteria and to quantify preferences, such as the weights representing the relative importance of criteria identified in the objective hierarchy. Finally, it is proposed that remediation alternatives should be evaluated by means of a fuzzy additive multi-attribute utility function and ranked on the basis of the respective trapezoidal fuzzy number representing their overall utility.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents an adaptation of the Cross-Entropy (CE) method to optimize fuzzy logic controllers. The CE is a recently developed optimization method based on a general Monte-Carlo approach to combinatorial and continuous multi-extremal optimization and importance sampling. This work shows the application of this optimization method to optimize the inputs gains, the location and size of the different membership functions' sets of each variable, as well as the weight of each rule from the rule's base of a fuzzy logic controller (FLC). The control system approach presented in this work was designed to command the orientation of an unmanned aerial vehicle (UAV) to modify its trajectory for avoiding collisions. An onboard looking forward camera was used to sense the environment of the UAV. The information extracted by the image processing algorithm is the only input of the fuzzy control approach to avoid the collision with a predefined object. Real tests with a quadrotor have been done to corroborate the improved behavior of the optimized controllers at different stages of the optimization process.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Stream-mining approach is defined as a set of cutting-edge techniques designed to process streams of data in real time, in order to extract knowledge. In the particular case of classification, stream-mining has to adapt its behaviour to the volatile underlying data distributions, what has been called concept drift. Moreover, it is important to note that concept drift may lead to situations where predictive models become invalid and have therefore to be updated to represent the actual concepts that data poses. In this context, there is a specific type of concept drift, known as recurrent concept drift, where the concepts represented by data have already appeared in the past. In those cases the learning process could be saved or at least minimized by applying a previously trained model. This could be extremely useful in ubiquitous environments that are characterized by the existence of resource constrained devices. To deal with the aforementioned scenario, meta-models can be used in the process of enhancing the drift detection mechanisms used by data stream algorithms, by representing and predicting when the change will occur. There are some real-world situations where a concept reappears, as in the case of intrusion detection systems (IDS), where the same incidents or an adaptation of them usually reappear over time. In these environments the early prediction of drift by means of a better knowledge of past models can help to anticipate to the change, thus improving efficiency of the model regarding the training instances needed. By means of using meta-models as a recurrent drift detection mechanism, the ability to share concepts representations among different data mining processes is open. That kind of exchanges could improve the accuracy of the resultant local model as such model may benefit from patterns similar to the local concept that were observed in other scenarios, but not yet locally. This would also improve the efficiency of training instances used during the classification process, as long as the exchange of models would aid in the application of already trained recurrent models, that have been previously seen by any of the collaborative devices. Which it is to say that the scope of recurrence detection and representation is broaden. In fact the detection, representation and exchange of concept drift patterns would be extremely useful for the law enforcement activities fighting against cyber crime. Being the information exchange one of the main pillars of cooperation, national units would benefit from the experience and knowledge gained by third parties. Moreover, in the specific scope of critical infrastructures protection it is crucial to count with information exchange mechanisms, both from a strategical and technical scope. The exchange of concept drift detection schemes in cyber security environments would aid in the process of preventing, detecting and effectively responding to threads in cyber space. Furthermore, as a complement of meta-models, a mechanism to assess the similarity between classification models is also needed when dealing with recurrent concepts. In this context, when reusing a previously trained model a rough comparison between concepts is usually made, applying boolean logic. The introduction of fuzzy logic comparisons between models could lead to a better efficient reuse of previously seen concepts, by applying not just equal models, but also similar ones. This work faces the aforementioned open issues by means of: the MMPRec system, that integrates a meta-model mechanism and a fuzzy similarity function; a collaborative environment to share meta-models between different devices; a recurrent drift generator that allows to test the usefulness of recurrent drift systems, as it is the case of MMPRec. Moreover, this thesis presents an experimental validation of the proposed contributions using synthetic and real datasets.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

El concepto de algoritmo es básico en informática, por lo que es crucial que los alumnos profundicen en él desde el inicio de su formación. Por tanto, contar con una herramienta que guíe a los estudiantes en su aprendizaje puede suponer una gran ayuda en su formación. La mayoría de los autores coinciden en que, para determinar la eficacia de una herramienta de visualización de algoritmos, es esencial cómo se utiliza. Así, los estudiantes que participan activamente en la visualización superan claramente a los que la contemplan de forma pasiva. Por ello, pensamos que uno de los mejores ejercicios para un alumno consiste en simular la ejecución del algoritmo que desea aprender mediante el uso de una herramienta de visualización, i. e. consiste en realizar una simulación visual de dicho algoritmo. La primera parte de esta tesis presenta los resultados de una profunda investigación sobre las características que debe reunir una herramienta de ayuda al aprendizaje de algoritmos y conceptos matemáticos para optimizar su efectividad: el conjunto de especificaciones eMathTeacher, además de un entorno de aprendizaje que integra herramientas que las cumplen: GRAPHs. Hemos estudiado cuáles son las cualidades esenciales para potenciar la eficacia de un sistema e-learning de este tipo. Esto nos ha llevado a la definición del concepto eMathTeacher, que se ha materializado en el conjunto de especificaciones eMathTeacher. Una herramienta e-learning cumple las especificaciones eMathTeacher si actúa como un profesor virtual de matemáticas, i. e. si es una herramienta de autoevaluación que ayuda a los alumnos a aprender de forma activa y autónoma conceptos o algoritmos matemáticos, corrigiendo sus errores y proporcionando pistas para encontrar la respuesta correcta, pero sin dársela explícitamente. En estas herramientas, la simulación del algoritmo no continúa hasta que el usuario introduce la respuesta correcta. Para poder reunir en un único entorno una colección de herramientas que cumplan las especificaciones eMathTeacher hemos creado GRAPHs, un entorno ampliable, basado en simulación visual, diseñado para el aprendizaje activo e independiente de los algoritmos de grafos y creado para que en él se integren simuladores de diferentes algoritmos. Además de las opciones de creación y edición del grafo y la visualización de los cambios producidos en él durante la simulación, el entorno incluye corrección paso a paso, animación del pseudocódigo del algoritmo, preguntas emergentes, manejo de las estructuras de datos del algoritmo y creación de un log de interacción en XML. Otro problema que nos planteamos en este trabajo, por su importancia en el proceso de aprendizaje, es el de la evaluación formativa. El uso de ciertos entornos e-learning genera gran cantidad de datos que deben ser interpretados para llegar a una evaluación que no se limite a un recuento de errores. Esto incluye el establecimiento de relaciones entre los datos disponibles y la generación de descripciones lingüísticas que informen al alumno sobre la evolución de su aprendizaje. Hasta ahora sólo un experto humano era capaz de hacer este tipo de evaluación. Nuestro objetivo ha sido crear un modelo computacional que simule el razonamiento del profesor y genere un informe sobre la evolución del aprendizaje que especifique el nivel de logro de cada uno de los objetivos definidos por el profesor. Como resultado del trabajo realizado, la segunda parte de esta tesis presenta el modelo granular lingüístico de la evaluación del aprendizaje, capaz de modelizar la evaluación y generar automáticamente informes de evaluación formativa. Este modelo es una particularización del modelo granular lingüístico de un fenómeno (GLMP), en cuyo desarrollo y formalización colaboramos, basado en la lógica borrosa y en la teoría computacional de las percepciones. Esta técnica, que utiliza sistemas de inferencia basados en reglas lingüísticas y es capaz de implementar criterios de evaluación complejos, se ha aplicado a dos casos: la evaluación, basada en criterios, de logs de interacción generados por GRAPHs y de cuestionarios de Moodle. Como consecuencia, se han implementado, probado y utilizado en el aula sistemas expertos que evalúan ambos tipos de ejercicios. Además de la calificación numérica, los sistemas generan informes de evaluación, en lenguaje natural, sobre los niveles de competencia alcanzados, usando sólo datos objetivos de respuestas correctas e incorrectas. Además, se han desarrollado dos aplicaciones capaces de ser configuradas para implementar los sistemas expertos mencionados. Una procesa los archivos producidos por GRAPHs y la otra, integrable en Moodle, evalúa basándose en los resultados de los cuestionarios. ABSTRACT The concept of algorithm is one of the core subjects in computer science. It is extremely important, then, for students to get a good grasp of this concept from the very start of their training. In this respect, having a tool that helps and shepherds students through the process of learning this concept can make a huge difference to their instruction. Much has been written about how helpful algorithm visualization tools can be. Most authors agree that the most important part of the learning process is how students use the visualization tool. Learners who are actively involved in visualization consistently outperform other learners who view the algorithms passively. Therefore we think that one of the best exercises to learn an algorithm is for the user to simulate the algorithm execution while using a visualization tool, thus performing a visual algorithm simulation. The first part of this thesis presents the eMathTeacher set of requirements together with an eMathTeacher-compliant tool called GRAPHs. For some years, we have been developing a theory about what the key features of an effective e-learning system for teaching mathematical concepts and algorithms are. This led to the definition of eMathTeacher concept, which has materialized in the eMathTeacher set of requirements. An e-learning tool is eMathTeacher compliant if it works as a virtual math trainer. In other words, it has to be an on-line self-assessment tool that helps students to actively and autonomously learn math concepts or algorithms, correcting their mistakes and providing them with clues to find the right answer. In an eMathTeacher-compliant tool, algorithm simulation does not continue until the user enters the correct answer. GRAPHs is an extendible environment designed for active and independent visual simulation-based learning of graph algorithms, set up to integrate tools to help the user simulate the execution of different algorithms. Apart from the options of creating and editing the graph, and visualizing the changes made to the graph during simulation, the environment also includes step-by-step correction, algorithm pseudo-code animation, pop-up questions, data structure handling and XML-based interaction log creation features. On the other hand, assessment is a key part of any learning process. Through the use of e-learning environments huge amounts of data can be output about this process. Nevertheless, this information has to be interpreted and represented in a practical way to arrive at a sound assessment that is not confined to merely counting mistakes. This includes establishing relationships between the available data and also providing instructive linguistic descriptions about learning evolution. Additionally, formative assessment should specify the level of attainment of the learning goals defined by the instructor. Till now, only human experts were capable of making such assessments. While facing this problem, our goal has been to create a computational model that simulates the instructor’s reasoning and generates an enlightening learning evolution report in natural language. The second part of this thesis presents the granular linguistic model of learning assessment to model the assessment of the learning process and implement the automated generation of a formative assessment report. The model is a particularization of the granular linguistic model of a phenomenon (GLMP) paradigm, based on fuzzy logic and the computational theory of perceptions, to the assessment phenomenon. This technique, useful for implementing complex assessment criteria using inference systems based on linguistic rules, has been applied to two particular cases: the assessment of the interaction logs generated by GRAPHs and the criterion-based assessment of Moodle quizzes. As a consequence, several expert systems to assess different algorithm simulations and Moodle quizzes have been implemented, tested and used in the classroom. Apart from the grade, the designed expert systems also generate natural language progress reports on the achieved proficiency level, based exclusively on the objective data gathered from correct and incorrect responses. In addition, two applications, capable of being configured to implement the expert systems, have been developed. One is geared up to process the files output by GRAPHs and the other one is a Moodle plug-in set up to perform the assessment based on the quizzes results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A eficiência e a racionalidade energética da iluminação pública têm relevante importância no sistema elétrico, porque contribui para diminuir a necessidade de investimentos na construção de novas fontes geradoras de energia elétrica e nos desperdícios energéticos. Apresenta-se como objetivo deste trabalho de pesquisa o desenvolvimento e aplicação do IDE (índice de desempenho energético), fundamentado no sistema de inferência nebulosa e indicadores de eficiência e racionalidade de uso da energia elétrica. A opção em utilizar a inferência nebulosa deve-se aos fatos de sua capacidade de reproduzir parte do raciocínio humano, e estabelecer relação entre a diversidade de indicadores envolvidos. Para a consecução do sistema de inferência nebulosa, foram definidas como variáveis de entrada: os indicadores de eficiência e racionalidade; o método de inferência foi baseado em regras produzidas por especialista em iluminação pública, e como saída um número real que caracteriza o IDE. Os indicadores de eficiência e racionalidade são divididos em duas classes: globais e específicos. Os indicadores globais são: FP (fator de potência), FC (fator de carga) e FD (fator de demanda). Os indicadores específicos são: FU (fator de utilização), ICA (consumo de energia por área iluminada), IE (intensidade energética) e IL (intensidade de iluminação natural). Para a aplicação deste trabalho, foi selecionada e caracterizada a iluminação pública da Cidade Universitária \"Armando de Salles Oliveira\" da Universidade de São Paulo. Sendo assim, o gestor do sistema de iluminação, a partir do índice desenvolvido neste trabalho, dispõe de condições para avaliar o uso da energia elétrica e, desta forma, elaborar e simular estratégias com o objetivo de economizá-la.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

O cenário competitivo e globalizado em que as empresas estão inseridas, sobretudo a partir do século XXI, associados a ciclos de vida cada vez menores dos produtos, rigorosos requisitos de qualidade, além de políticas de preservação do meio ambiente, com redução de consumo energético e de recursos hídricos, somadas às exigências legais de melhores condições de trabalho, resultaram em uma quebra de paradigma nos processos produtivos até então concebidos. Como solução a este novo cenário produtivo pode-se citar o extenso uso da automação industrial, fato que resultou em sistemas cada vez mais complexos, tanto do ponto de vista estrutural, em função do elevado número de componentes, quanto da complexidade dos sistemas de controle. A previsibilidade de todos os estados possíveis do sistema torna-se praticamente impossível. Dentre os estados possíveis pode-se citar os estados de falha que, dependendo da severidade do efeito associado à sua ocorrência, podem resultar em sérios danos para o homem, o meio ambiente e às próprias instalações, caso não sejam corretamente diagnosticados e tratados. Fatos recentes de catástrofes relacionadas à sistemas produtivos revelam a necessidade de se implementar medidas para prevenir e para mitigar os efeitos da ocorrência de falhas, com o objetivo de se evitar a ocorrência de catástrofes. De acordo com especialistas, os Sistemas Instrumentados de Segurança SIS, referenciados em normas como a IEC 61508 e IEC 61511, são uma solução para este tipo de problema. Trabalhos publicados tratam de métodos para a implementação de camadas SIS de prevenção, porém com escassez de trabalhos para camadas SIS de mitigação. Em função do desconhecimento da dinâmica do sistema em estado de falha, técnicas tradicionais de modelagem tornam-se inviáveis. Neste caso, o uso de inteligência artificial, como por exemplo a lógica fuzzy, pode se tornar uma solução para o desenvolvimento do algoritmo de controle, associadas a ferramentas de edição, modelagem e geração dos códigos de controle. A proposta deste trabalho é apresentar uma sistemática para a implementação de um sistema de controle para a mitigação de falhas críticas em sistemas produtivos, com referência às normas IEC 61508/61511, com ação antecipativa à ocorrência de catástrofes.