959 resultados para Fungal metabolites


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cells and cell-free solutions of the culture filtrate of the bacterial symbiont, Xenorhabdus nematophila taken from the entomopathogenic nematode Steinernema carpocapsae in aqueous broth suspensions were lethal to larvae of the diamondback moth Plutella xylostella. Their application on leaves of Chinese cabbage indicated that the cells can penetrate into the insects in the absence of the nematode vector. Cell-free solutions containing metabolites were also proved as effective as bacterial cells suspension. The application of aqueous suspensions of cells of X. nematophila or solutions containing its toxic metabolites to the leaves represents a possible new strategy for controlling insect pests on foliage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biocontrol agents such as Xeiwrhabduf, nemalophilci and X. nematophila ssp. bovienii and their cell-free protein toxin complexes were lethal to larvae of O. sulcatus when applied to potting compost in the absence of plants. Similarly, strawberry plants infected with 0. sulcaitfi larvae were protected from damage by applications of both cell suspensions of the bacteria and solutions of their cell-free toxic metabolites, indicating that it is the protein toxins, which are responsible for the lethal effects observed. These toxic metabolites were found more effective against 0. sulccitus larvae when treated in soil microflora. Insect mortality is increased by increasing temperature and bacterial concentration. The toxins remained pathogenic for several months when stored in potting soil either at 15 or 20°C, however, bacterial cells were not as persistent as the toxins. It is therefore suggested that these bacteria and their toxic metabolites can he applied in soil for insect pest control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To further our understanding of powdery mildew biology during infection, we undertook a systematic shotgun proteomics analysis of the obligate biotroph Blumeria graminis f. sp. hordei at different stages of development in the host. Moreover we used a proteogenomics approach to feed information into the annotation of the newly sequenced genome. We analyzed and compared the proteomes from three stages of development representing different functions during the plant-dependent vegetative life cycle of this fungus. We identified 441 proteins in ungerminated spores, 775 proteins in epiphytic sporulating hyphae, and 47 proteins from haustoria inside barley leaf epidermal cells and used the data to aid annotation of the B. graminis f. sp. hordei genome. We also compared the differences in the protein complement of these key stages. Although confirming some of the previously reported findings and models derived from the analysis of transcriptome dynamics, our results also suggest that the intracellular haustoria are subject to stress possibly as a result of the plant defense strategy, including the production of reactive oxygen species. In addition, a number of small haustorial proteins with a predicted N-terminal signal peptide for secretion were identified in infected tissues: these represent candidate effector proteins that may play a role in controlling host metabolism and immunity. Molecular & Cellular Proteomics 8: 2368-2381, 2009.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Almost all stages of a plant pathogen life cycle are potentially density dependent. At small scales and short time spans appropriate to a single-pathogen individual, density dependence can be extremely strong, mediated both by simple resource use, changes in the host due to defence reactions and signals between fungal individuals. In most cases, the consequences are a rise in reproductive rate as the pathogen becomes rarer, and consequently stabilisation of the population dynamics; however, at very low density reproduction may become inefficient, either because it is co-operative or because heterothallic fungi do not form sexual spores. The consequence will be historically determined distributions. On a medium scale, appropriate for example to several generations of a host plant, the factors already mentioned remain important but specialist natural enemies may also start to affect the dynamics detectably. This could in theory lead to complex (e.g. chaotic) dynamics, but in practice heterogeneity of habitat and host is likely to smooth the extreme relationships and make for more stable, though still very variable, dynamics. On longer temporal and longer spatial scales evolutionary responses by both host and pathogen are likely to become important, producing patterns which ultimately depend on the strength of interactions at smaller scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presumption that the synthesis of 'defence' compounds in plants must incur some 'trade-off' or penalty in terms of annual crop yields has been used to explain observed inverse correlations between resistance to herbivores and rates of growth or photosynthesis. An analysis of the cost of making secondary compounds suggests that this accounts for only a small part of the overall carbon budget of annual crop plants. Even the highest reported amounts of secondary metabolites found in different crop species (flavonoids, allylisothiocyanates, hydroxamic acids, 2-tridecanone) represent a carbon demand that can be satisfied by less than an hour's photosynthesis. Similar considerations apply to secondary compounds containing nitrogen or sulphur, which are unlikely to represent a major investment compared to the cost of making proteins, the major demand for these elements. Decreases in growth and photosynthesis in response to stress are more likely the result of programmed down-regulation. Observed correlations between yield and low contents of unpalatable or toxic compounds may be the result of parallel selection during the refinement of crop species by humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we report the antioxidant activity of different compounds which are present in coffee or are produced as a result of the metabolism of this beverage. In vitro methods such as the ABTS(center dot+) [ABTS = 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)] decolorization assay and the oxygen radical absorbance capacity assay (ORAC) were used to assess the capacity of coffee compounds to scavenge free radicals. The importance of caffeine metabolites and colonic metabolites in the overall antioxidant activity associated with coffee consumption is shown. Colonic metabolites such as m-coumaric acid and dihydroferulic acid showed high antioxidant activity. The ability of these compounds to protect human low-density lipoprotein (LDL) oxidation by copper and 2,2'-azobis(2-amidinopropane) dihydrochloride was also explored. 1-Methyluric acid was particularly effective at inhibiting LDL oxidative modification. Different experiments showed that this caffeine metabolite is not incorporated into LDL particles. However, at physiologically relevant concentrations, it was able to delay for more than 13 h LDL oxidation by copper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micromorphological characters of the fruiting bodies, such as ascus-type and hymenial amyloidity, and secondary chemistry have been widely employed as key characters in Ascomycota classification. However, the evolution of these characters has yet not been studied using molecular phylogenies. We have used a combined Bayesian and maximum likelihood based approach to trace character evolution on a tree inferred from a combined analysis of nuclear and mitochondrial ribosomal DNA sequences. The maximum likelihood aspect overcomes simplifications inherent in maximum parsimony methods, whereas the Markov chain Monte Carlo aspect renders results independent of any particular phylogenetic tree. The results indicate that the evolution of the two chemical characters is quite different, being stable once developed for the medullary lecanoric acid, whereas the cortical chlorinated xanthones appear to have been lost several times. The current ascus-types and the amyloidity of the hymenial gel in Pertusariaceae appear to have been developed within the family. The basal ascus-type of pertusarialean fungi remains unknown. (c) 2006 The Linnean Society of London, Biological Journal of the Linnean Society, 2006, 89, 615-626.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The antagonistic activities of six selected fungal isolates against Armilloria mellea were studied on two different concentrations of three media, on fungicides-amended malt extract agar (MEA) medium, and in glasshouse pots filled with John Innes No.2 compost and natural field soil. Trichoderma hamatum isolate Tham1 was found the most effective in reducing Armillaria growths on both the low and high concentrations of malt extract, potato dextrose and V-8 juice in MEA, potato dextrose agar (PDA) and V-8 juice agar (VJA), respectively, followed by T. harzianum isolate Th2 and T. viride isolate Tv3. Neither dose rate (200 or 2000 mg l(-1)) of fenpropidin allowed any growth of Armillaria on MEA, while that of the antagonists was also completely inhibited or greatly restricted. However, both dose rates of fosetyl-A1 allowed the growth of Armillaria and almost all the antagonists. Data on colony diameters of Armillaria showed Tham1 as the most effective antagonist along with Th2, Th23 and Tv3. Tham1 was also found the most effective in protecting hazel billets from colonization by Armillaria, followed by Th2 and Th23. Compared with 7.1 colonized billets in the inoculated controls, only 1.3, 2.6 and 2.7 billets (out of ten) were colonized, respectively, when protected with these antagonists. The results indicate that the Trichoderma isolates are able to maintain their antagonistic effects on A. mellea under a variety of nutritional, chemical and edaphic regimes. More investigations are needed to develop a system of control for the disease with these potential antagonists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a glasshouse experiment using potted strawberry plants (cv. Cambridge Favourite) as hosts, the effect of selected fungal antagonists grown on 25 or 50 g of mushroom compost containing autoclaved mycelia of Agaricus bisporus, or wheat bran was evaluated against Armillaria mellea. Another glasshouse experiment tested the effect of application time of the antagonists in relation to inoculations with the pathogen. A significant interaction was found between the antagonists, substrates and dose rates. All the plants treated with Chaetomium olivaceum isolate Co on 50 g wheat bran survived until the end of the experiment which lasted 482 days, while none of them survived when this antagonist was added to the roots of the plants on 25 g wheat bran or 25 or 50 g mushroom compost. Dactylium dendroides isolate SP had a similar effect, although with a lower host survival rate of 33.3%. Trichoderma hamatum isolate Tham 1 and T. harzianum isolate Th23 protected 33.3% of the plants when added on 50 g and none when added on 25 g of either substrate, while 66.7% of the plants treated with T. harzianum isolate Th2 on 25 g, or T viride isolate TO on 50 g wheat bran, survived. Application of the antagonists on mushroom compost initially resulted in development of more leaves and healthier plants, but this effect was not sustained. Eventually, plants treated with the antagonists on wheat bran had significantly more leaves and higher health scores. The plants treated with isolate Th2 and inoculated with Armillaria at the same time had a survival rate of 66.7% for the duration of the experiment (475 days), while none of them survived that long when the antagonist and pathogen were applied with an interval of 85 days in either sequence. C. olivaceum isolate Co showed a protective effect only, as 66.7% of the plants survived when they were treated with the antagonist 85 days before inoculation with the pathogen, while none of them survived when the antagonist and pathogen were applied together or the infection preceded protection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several in vitro and in vivo experiments were conducted to develop an effective technique for culturing potential fungal antagonists (isolates of Trichoderma harzianum, Dactylium dendroides, Chaetomium olivaceum and one unidentified fungus) selected for activity against Armillaria mellea. The antagonists were inoculated onto (1) live spawn of the oyster mu shroom (Pleurotus ostreatus), (2) extra-moistened or sucrose-enriched mushroom composts containing living or autoclaved mycelia of P. ostreatus or Agaricus bisporus (button mushroom), (3) pasteurized compost with or without A. bisporus mycelium, wheat bran, wheat germ and (4) spent mushroom composts with living mycelia of A. bisporus, P. ostreatus or Lentinus edodes (the Shiitake mushroom). In one experiment, a representative antagonist (isolate Th2 of T. harzianum) was grown together with the A. bisporus mycelium, while in another one, the antagonist was first grown on wheat germ or wheat bran and then on mushroom compost with living mycelium of A. bisporus. Some of the carrier substrates were then added to the roots of potted strawberry plants in the glasshouse to evaluate their effectiveness against the disease. The antagonists failed to grow on the spawn of P. ostreatus even after reinoculations and prolonged incubation. Providing extra moisture or sucrose enrichment also did not improve the growth of Th2 on mushroom composts in the presence of living mycelia of A. bisporus or P. ostreatus. The antagonist, however, grew rapidly and extensively on mushroom compost with autoclaved mycelia, and also on wheat germ and wheat bran. Colonization of the substrates by the antagonist was positively correlated with its effectiveness in the glasshouse studies. Whereas only 33.3% of the inoculated control plants survived in one experiment monitored for 560 days, 100% survival was achieved when Th2 was applied on wheat germ or wheat bran. Growth of the antagonist alone on pasteurized or sterilized compost (without A. bisporus mycelia) and simultaneous growth of the antagonist and mushroom on pasteurized compost did not improve survival over the inoculated controls, but growth over mushroom compost with the living mycelium resulted in 50% survival rate. C. olivaceum isolate Co was the most effective, resulting in overall survival rate of 83.3% compared with only 8.3% for the inoculated and 100% for the uninoculated (healthy) controls. This antagonist gave the highest survival rate of 100% on spent mushroom compost with L. edodes. T harzianum isolate Th23, with 75% survival rate, was the most effective on spent mushroom compost with P. ostreatus, while D. dendroides isolate SP resulted in equal survival rates of 50% on all the three mushroom composts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seventeen fungal isolates were tested in vitro as potential antagonists of two isolates of the root rot pathogen, Armillaria mellea. Some of the isolates were also added on mushroom composts with living mycelia to the roots of Armillaria-inoculated potted strawberry plants in the glasshouse to find out if they had the same degree of efficacy against the disease. Dactylium dendroides isolate SP was the most effective in reducing mycelial growth of A. mellea isolate 1 (Am1), followed by Trichoderma harzianum isolate Th2 and T. viride isolate Tv4. Th2, Th22, Tv3 and SP grew extensively over Am1 colonies, disintegrating the rhizomorphs. Isolate Tham1 of T hamatum was the most effective in reducing mycelial growth of A. mellea isolate 2 (Am2), followed by Tv3. Th12, Th22, Tv1, Tv3 and SP inhibited the initiation and growth of rhizomorphs of Am2. Regeneration tests showed that both Am1 and Am2 attacked by Trichoderma isolates and SP were no longer viable. Th23 and SP were almost as effective in vivo as in vitro. But isolate Co of Chaetomium olivaceum, which was ineffective in vitro, was found effective in vivo. Conversely, Th2, which exhibited good antagonistic activity in vitro, performed poorly in vivo. These results show that the in vitro and in vivo efficacies of potential antagonists may not necessarily be closely correlated. Hence, there is a danger that potentially effective isolates may be discarded if decisions are made only on the basis of preliminary screening tests carried out under laboratory conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Soy isoflavones have been extensively studied because of their possible health-promoting effects. Genistein and daidzein, the major isoflavone aglycones, have received most attention; however, they undergo extensive metabolism in the gut and liver, which might affect their biological properties. 2. The antioxidant activity, free radical-scavenging properties and selected cellular effects of the isoflavone metabolites equol, 8-hydroxydaidzein, O-desmethylangiolensin, and 1,3,5 trihydroxybenzene were investigated in comparison with their parent aglycones, genistein and daidzein. 3. Electron spin resonance spectroscopy indicated that 8-hydroxydaidzein was the most potent scavenger of hydroxyl and superoxide anion radicals. Isoflavone metabolites also exhibited higher antioxidant activity than parent compounds in standard antioxidant (FRAP and TEAC) assays. However, for the suppression of nitric oxide production by activated macrophages, genistein showed the highest potency, followed by equol and daidzein. 4. The metabolism of isoflavones affects their free radical scavenging and antioxidant properties, and their cellular activity, but the effects are complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of temperature on life history traits of four Acyrthosiphon pisum clones was investigated, together with their resistance to one genotype of the fungal entomopathogen Erynia neoaphidis . There was no difference among aphid clones in development rate, but they did differ in fecundity. Both development rate and fecundity were influenced by temperature, but all clones showed similar responses to the changes in temperature (i.e. the interaction term was nonsignificant). However, there were significant differences among clones in susceptibility to the pathogen, and this was influenced by temperature. Furthermore, the clones differed in how temperature influenced susceptibility, with susceptibility rankings changing with temperature. Two clones showed changes in susceptibility which mirrored changes in the in vitro vegetative growth rate of E. neoaphidis at different temperatures, whereas two other clones differed considerably from this expected response. Such interactions between genotype and temperature may help maintain heritable variation in aphid susceptibility to fungal pathogen attack and have implications for our understanding of disease dynamics in natural populations. This study also highlights the difficulties of drawing conclusions about the efficacy of a biological control agent when only a restricted range of pest genotypes or environmental conditions are considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To further our understanding of powdery mildew biology during infection, we undertook a systematic shotgun proteomics analysis of the obligate biotroph Blumeria graminis f. sp. hordei at different stages of development in the host. Moreover we used a proteogenomics approach to feed information into the annotation of the newly sequenced genome. We analyzed and compared the proteomes from three stages of development representing different functions during the plant-dependent vegetative life cycle of this fungus. We identified 441 proteins in ungerminated spores, 775 proteins in epiphytic sporulating hyphae, and 47 proteins from haustoria inside barley leaf epidermal cells and used the data to aid annotation of the B. graminis f. sp. hordei genome. We also compared the differences in the protein complement of these key stages. Although confirming some of the previously reported findings and models derived from the analysis of transcriptome dynamics, our results also suggest that the intracellular haustoria are subject to stress possibly as a result of the plant defense strategy, including the production of reactive oxygen species. In addition, a number of small haustorial proteins with a predicted N-terminal signal peptide for secretion were identified in infected tissues: these represent candidate effector proteins that may play a role in controlling host metabolism and immunity. Molecular & Cellular Proteomics 8: 2368-2381, 2009.