973 resultados para Friction, self-ligating bracket, sliding mechanics
Resumo:
Overweight and obesity are two of the most important emerging public health issues in our time and regarded by the World Health Organisation [WHO] (1998) as a worldwide epidemic. The prevalence of obesity in the USA is the highest in the world, and Australian obesity rates fall into second place. Currently, about 60% of Australian adults are overweight (BMI „d 25kg/m2). The socio-demographic factors associated with overweight and/or obesity have been well demonstrated, but many of the existing studies only examined these relationships at one point of time, and did not examine whether significant relationships changed over time. Furthermore, only limited previous research has examined the issue of the relationship between perception of weight status and actual weight status, as well as factors that may impact on people¡¦s perception of their body weight status. Aims: The aims of the proposed research are to analyse the discrepancy between perceptions of weight status and actual weight status in Australian adults; to examine if there are trends in perceptions of weight status in adults between 1995 to 2004/5; and to propose a range of health promotion strategies and furth er research that may be useful in managing physical activity, healthy diet, and weight reduction. Hypotheses: Four alternate hypotheses are examined by the research: (1) there are associations between independent variables (e.g. socio -demographic factors, physical activity and dietary habits) and overweight and/or obesity; (2) there are associations between the same independent variables and the perception of overweight; (3) there are associations between the same independent variables and the discrepancy between weight status and perception of weight status; and (4) there are trends in overweight and/or obesity, perception of overweight, and the discrepancy in Australian adults from 1995 to 2004/5. Conceptual Framework and Methods: A conceptual framework is developed that shows the associations identified among socio -demographic factors, physical activity and dietary habits with actual weight status, as well as examining perception of weight status. The three latest National Health Survey data bases (1995 , 2001 and 2004/5) were used as the primary data sources. A total of 74,114 Australian adults aged 20 years and over were recruited from these databases. Descriptive statistics, bivariate analyses (One -Way ANOVA tests, unpaired t-tests and Pearson chi-square tests), and multinomial logistic regression modelling were used to analyse the data. Findings: This research reveals that gender, main language spoken at home, occupation status, household structure, private health insurance status, and exercise are related to the discrepancy between actual weight status and perception of weight status, but only gender and exercise are related to the discrepancy across the three time point s. The current research provides more knowledge about perception of weight status independently. Factors which affect perception of overweight are gender, age, language spoken at home, private health insurance status, and diet ary habits. The study also finds that many factors that impact overweight and/or obesity also have an effect on perception of overweight, such as age, language spoken at home, household structure, and exercise. However, some factors (i.e. private health insurance status and milk consumption) only impact on perception of overweight. Furthermore, factors that are rel ated to people’s overweight are not totally related to people’s underestimation of their body weight status in the study results. Thus, there are unknown factors which can affect people’s underestimation of their body weight status. Conclusions: Health promotion and education activities should provide education about population health education and promotion and education for particular at risk sub -groups. Further research should take the form of a longitudinal study design ed to examine the causal relationship between overweight and/or obesity and underestimation of body weight status, it should also place more attention on the relationships between overweight and/or obesity and dietary habits, with a more comprehensive representation of SES. Moreover, further research that deals with identification of characteristics about perception of weight status, in particular the underestimation of body weight status should be undertaken.
Resumo:
This paper presents a brief analysis of Seoul trans-youth’s search for identity through urban social networking, arguing that technological, socio-cultural and environmental (urban) contexts frame how mobility and ubiquity are (re)created in Seoul. The paper is empirically based on fieldwork conducted in Seoul, South Korea, from 2007 to 2008 as part of a research project on the mobile play culture of Seoul trans-youth(a term that will be explained in detail in the following section). Shared Visual Ethnography (SVE) was used as the research method which involved sharing of visual ethnographic data that were created by the participants. More specifically, the participants were asked to take photos, which were then shared and discussed with other participants and the researcher on the photo-sharing service Flickr. The research also involved a questionnaire and daily activity diaries, as well as interviews. A total of 44 Korean transyouths – including 23 females and 21 males – participated in interviews and photo-sharing. The paper draws specifically on the qualitative data from individual and/or group interviews, the total duration of which was 2–2.5 hours for each participant.
Resumo:
Appropriate behaviours toward customers often requires employees to suppress some genuine emotions and/or express other emotions; genuine or contrived. Managing one's emotions in this way gives rise to emotional exhaustion. This can have consequences for psychological ill health, in the form of work place strain, and ultimately employee's desire to leave. This student examines the relationships between emotional management, emotional exhaustion and turnover intentions amongst diversional therapy professionals. We find that some forms of emotional management have a significant impact on emotional exhaustion and that this predicts workplace strain. Furthermore, the deleterious effects of emotional exhaustion are mitigated somewhat for employees who have strong beliefs in their ability to provide good service, compared to employees with lower self efficacy beliefs.
Resumo:
A major focus of research in nanotechnology is the development of novel, high throughput techniques for fabrication of arbitrarily shaped surface nanostructures of sub 100 nm to atomic scale. A related pursuit is the development of simple and efficient means for parallel manipulation and redistribution of adsorbed atoms, molecules and nanoparticles on surfaces – adparticle manipulation. These techniques will be used for the manufacture of nanoscale surface supported functional devices in nanotechnologies such as quantum computing, molecular electronics and lab-on-achip, as well as for modifying surfaces to obtain novel optical, electronic, chemical, or mechanical properties. A favourable approach to formation of surface nanostructures is self-assembly. In self-assembly, nanostructures are grown by aggregation of individual adparticles that diffuse by thermally activated processes on the surface. The passive nature of this process means it is generally not suited to formation of arbitrarily shaped structures. The self-assembly of nanostructures at arbitrary positions has been demonstrated, though these have typically required a pre-patterning treatment of the surface using sophisticated techniques such as electron beam lithography. On the other hand, a parallel adparticle manipulation technique would be suited for directing the selfassembly process to occur at arbitrary positions, without the need for pre-patterning the surface. There is at present a lack of techniques for parallel manipulation and redistribution of adparticles to arbitrary positions on the surface. This is an issue that needs to be addressed since these techniques can play an important role in nanotechnology. In this thesis, we propose such a technique – thermal tweezers. In thermal tweezers, adparticles are redistributed by localised heating of the surface. This locally enhances surface diffusion of adparticles so that they rapidly diffuse away from the heated regions. Using this technique, the redistribution of adparticles to form a desired pattern is achieved by heating the surface at specific regions. In this project, we have focussed on the holographic implementation of this approach, where the surface is heated by holographic patterns of interfering pulsed laser beams. This implementation is suitable for the formation of arbitrarily shaped structures; the only condition is that the shape can be produced by holographic means. In the simplest case, the laser pulses are linearly polarised and intersect to form an interference pattern that is a modulation of intensity along a single direction. Strong optical absorption at the intensity maxima of the interference pattern results in approximately a sinusoidal variation of the surface temperature along one direction. The main aim of this research project is to investigate the feasibility of the holographic implementation of thermal tweezers as an adparticle manipulation technique. Firstly, we investigate theoretically the surface diffusion of adparticles in the presence of sinusoidal modulation of the surface temperature. Very strong redistribution of adparticles is predicted when there is strong interaction between the adparticle and the surface, and the amplitude of the temperature modulation is ~100 K. We have proposed a thin metallic film deposited on a glass substrate heated by interfering laser beams (optical wavelengths) as a means of generating very large amplitude of surface temperature modulation. Indeed, we predict theoretically by numerical solution of the thermal conduction equation that amplitude of the temperature modulation on the metallic film can be much greater than 100 K when heated by nanosecond pulses with an energy ~1 mJ. The formation of surface nanostructures of less than 100 nm in width is predicted at optical wavelengths in this implementation of thermal tweezers. Furthermore, we propose a simple extension to this technique where spatial phase shift of the temperature modulation effectively doubles or triples the resolution. At the same time, increased resolution is predicted by reducing the wavelength of the laser pulses. In addition, we present two distinctly different, computationally efficient numerical approaches for theoretical investigation of surface diffusion of interacting adparticles – the Monte Carlo Interaction Method (MCIM) and the random potential well method (RPWM). Using each of these approaches we have investigated thermal tweezers for redistribution of both strongly and weakly interacting adparticles. We have predicted that strong interactions between adparticles can increase the effectiveness of thermal tweezers, by demonstrating practically complete adparticle redistribution into the low temperature regions of the surface. This is promising from the point of view of thermal tweezers applied to directed self-assembly of nanostructures. Finally, we present a new and more efficient numerical approach to theoretical investigation of thermal tweezers of non-interacting adparticles. In this approach, the local diffusion coefficient is determined from solution of the Fokker-Planck equation. The diffusion equation is then solved numerically using the finite volume method (FVM) to directly obtain the probability density of adparticle position. We compare predictions of this approach to those of the Ermak algorithm solution of the Langevin equation, and relatively good agreement is shown at intermediate and high friction. In the low friction regime, we predict and investigate the phenomenon of ‘optimal’ friction and describe its occurrence due to very long jumps of adparticles as they diffuse from the hot regions of the surface. Future research directions, both theoretical and experimental are also discussed.
Resumo:
Osteoporosis is a disease characterized by low bone mass and micro-architectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture. Osteoporosis affects over 200 million people worldwide, with an estimated 1.5 million fractures annually in the United States alone, and with attendant costs exceeding $10 billion dollars per annum. Osteoporosis reduces bone density through a series of structural changes to the honeycomb-like trabecular bone structure (micro-structure). The reduced bone density, coupled with the microstructural changes, results in significant loss of bone strength and increased fracture risk. Vertebral compression fractures are the most common type of osteoporotic fracture and are associated with pain, increased thoracic curvature, reduced mobility, and difficulty with self care. Surgical interventions, such as kyphoplasty or vertebroplasty, are used to treat osteoporotic vertebral fractures by restoring vertebral stability and alleviating pain. These minimally invasive procedures involve injecting bone cement into the fractured vertebrae. The techniques are still relatively new and while initial results are promising, with the procedures relieving pain in 70-95% of cases, medium-term investigations are now indicating an increased risk of adjacent level fracture following the procedure. With the aging population, understanding and treatment of osteoporosis is an increasingly important public health issue in developed Western countries. The aim of this study was to investigate the biomechanics of spinal osteoporosis and osteoporotic vertebral compression fractures by developing multi-scale computational, Finite Element (FE) models of both healthy and osteoporotic vertebral bodies. The multi-scale approach included the overall vertebral body anatomy, as well as a detailed representation of the internal trabecular microstructure. This novel, multi-scale approach overcame limitations of previous investigations by allowing simultaneous investigation of the mechanics of the trabecular micro-structure as well as overall vertebral body mechanics. The models were used to simulate the progression of osteoporosis, the effect of different loading conditions on vertebral strength and stiffness, and the effects of vertebroplasty on vertebral and trabecular mechanics. The model development process began with the development of an individual trabecular strut model using 3D beam elements, which was used as the building block for lattice-type, structural trabecular bone models, which were in turn incorporated into the vertebral body models. At each stage of model development, model predictions were compared to analytical solutions and in-vitro data from existing literature. The incremental process provided confidence in the predictions of each model before incorporation into the overall vertebral body model. The trabecular bone model, vertebral body model and vertebroplasty models were validated against in-vitro data from a series of compression tests performed using human cadaveric vertebral bodies. Firstly, trabecular bone samples were acquired and morphological parameters for each sample were measured using high resolution micro-computed tomography (CT). Apparent mechanical properties for each sample were then determined using uni-axial compression tests. Bone tissue properties were inversely determined using voxel-based FE models based on the micro-CT data. Specimen specific trabecular bone models were developed and the predicted apparent stiffness and strength were compared to the experimentally measured apparent stiffness and strength of the corresponding specimen. Following the trabecular specimen tests, a series of 12 whole cadaveric vertebrae were then divided into treated and non-treated groups and vertebroplasty performed on the specimens of the treated group. The vertebrae in both groups underwent clinical-CT scanning and destructive uniaxial compression testing. Specimen specific FE vertebral body models were developed and the predicted mechanical response compared to the experimentally measured responses. The validation process demonstrated that the multi-scale FE models comprising a lattice network of beam elements were able to accurately capture the failure mechanics of trabecular bone; and a trabecular core represented with beam elements enclosed in a layer of shell elements to represent the cortical shell was able to adequately represent the failure mechanics of intact vertebral bodies with varying degrees of osteoporosis. Following model development and validation, the models were used to investigate the effects of progressive osteoporosis on vertebral body mechanics and trabecular bone mechanics. These simulations showed that overall failure of the osteoporotic vertebral body is initiated by failure of the trabecular core, and the failure mechanism of the trabeculae varies with the progression of osteoporosis; from tissue yield in healthy trabecular bone, to failure due to instability (buckling) in osteoporotic bone with its thinner trabecular struts. The mechanical response of the vertebral body under load is highly dependent on the ability of the endplates to deform to transmit the load to the underlying trabecular bone. The ability of the endplate to evenly transfer the load through the core diminishes with osteoporosis. Investigation into the effect of different loading conditions on the vertebral body found that, because the trabecular bone structural changes which occur in osteoporosis result in a structure that is highly aligned with the loading direction, the vertebral body is consequently less able to withstand non-uniform loading states such as occurs in forward flexion. Changes in vertebral body loading due to disc degeneration were simulated, but proved to have little effect on osteoporotic vertebra mechanics. Conversely, differences in vertebral body loading between simulated invivo (uniform endplate pressure) and in-vitro conditions (where the vertebral endplates are rigidly cemented) had a dramatic effect on the predicted vertebral mechanics. This investigation suggested that in-vitro loading using bone cement potting of both endplates has major limitations in its ability to represent vertebral body mechanics in-vivo. And lastly, FE investigation into the biomechanical effect of vertebroplasty was performed. The results of this investigation demonstrated that the effect of vertebroplasty on overall vertebra mechanics is strongly governed by the cement distribution achieved within the trabecular core. In agreement with a recent study, the models predicted that vertebroplasty cement distributions which do not form one continuous mass which contacts both endplates have little effect on vertebral body stiffness or strength. In summary, this work presents the development of a novel, multi-scale Finite Element model of the osteoporotic vertebral body, which provides a powerful new tool for investigating the mechanics of osteoporotic vertebral compression fractures at the trabecular bone micro-structural level, and at the vertebral body level.
Resumo:
Globalisation and societal change suggest the language and literacy skills needed to make meaning in our lives are increasing and changing radically. Multiliteracies are influencing the future of literacy teaching. One aspect of the pedagogy of multiliteracies is recruiting learners’ previous and current experiences as an integral part of the learning experience. This paper examines the implications of results from a project that examined student responses to a postmodern picture book, in particular, ways teachers might develop students’ self-knowledge about reading. It draws on Freebody and Luke’s Four Resources Model of Reading and recently developed models for teaching multiliteracies.
Resumo:
Few studies have evaluated the reliability of lifetime sun exposure estimated from inquiring about the number of hours people spent outdoors in a given period on a typical weekday or weekend day (the time-based approach). Some investigations have suggested that women have a particularly difficult task in estimating time outdoors in adulthood due to their family and occupational roles. We hypothesized that people might gain additional memory cues and estimate lifetime hours spent outdoors more reliably if asked about time spent outdoors according to specific activities (an activity-based approach). Using self-administered, mailed questionnaires, test-retest responses to time-based and to activity-based approaches were evaluated in 124 volunteer radiologic technologist participants from the United States: 64 females and 60 males 48 to 80 years of age. Intraclass correlation coefficients (ICC) were used to evaluate the test-retest reliability of average number of hours spent outdoors in the summer estimated for each approach. We tested the differences between the two ICCs, corresponding to each approach, using a t test with the variance of the difference estimated by the jackknife method. During childhood and adolescence, the two approaches gave similar ICCs for average numbers of hours spent outdoors in the summer. By contrast, compared with the time-based approach, the activity-based approach showed significantly higher ICCs during adult ages (0.69 versus 0.43, P = 0.003) and over the lifetime (0.69 versus 0.52, P = 0.05); the higher ICCs for the activity-based questionnaire were primarily derived from the results for females. Research is needed to further improve the activity-based questionnaire approach for long-term sun exposure assessment. (Cancer Epidemiol Biomarkers Prev 2009;18(2):464–71)
Resumo:
Background: Incidence and mortality from skin cancers including melanoma are highest among men 50 years or older. Thorough skin self-examination may be beneficial to improve skin cancers outcomes.--------- Objectives: To develop and conduct a randomized-controlled trial of a video-based intervention to improve skin self-examination behavior among men 50 years or older.--------- Methods: Pilot work ascertained appropriate targeting of the 12-minute intervention video towards men 50 years or older. Overall, 968 men were recruited and 929 completed baseline telephone assessment. Baseline analysis assessed randomization balance and demographic, skin cancer risk and attitudinal factors associated with conducting a whole-body skin self-examination or receiving a whole-body clinical skin examination by a doctor during the past 12 months.--------- Results: Randomization resulted in well-balanced intervention and control groups. Overall 13% of men reported conducting a thorough skin self-examination using a mirror or the help of another person to check difficult to see areas, while 39% reported having received a whole-body skin examination by a doctor within the past 12 months. Confidence in finding time for and receiving advice or instructions by a doctor to perform a skin self-examination were among the factors associated with thorough skin self-examination at baseline.---------- Conclusions: Men 50 years or older can successfully be recruited to a video-based intervention trial with the aim reduce their burden through skin cancer. Randomization by computer generated randomization list resulted in good balance between control and intervention group and baseline analysis determined factors associated with skin cancer early detection behavior at baseline.