889 resultados para Frequency-Domain Analysis
Resumo:
The literature indicated that the fractal analysis of heart rate variability (HRV) is related to the chaos theory. However, it is not clear if the both short and long-term fractal scaling exponents of HRV are reliable for short period analysis in women. We evaluated the association of the fractal exponents of HRV with the time and frequency domain and geometric indices of HRV. We evaluated 65 healthy women between 18 and 30 years old. HRV was analyzed with a minimal number of 256 RR intervals in the time (SDNN, RMSSD, NN50 and pNN50) and frequency (LF, HF and LF/HF ratio) domains, the geometric index were also analyzed (triangular indexRRtri, triangular interpolation of RR intervals-TINN and Poincaré plot-SD1, SD2 and SD1/SD2) as well as short and long-term fractal exponents (alpha-1 and alpha-2) of the detrended fluctuation analysis (DFA). No significant correlation was observed for alpha-2 exponent with all indices. There was significant correlation of the alpha-1 exponent with RMSSD, pNN50, SDNN/RMSSD, LF (nu), HF (nu and ms2 ), LF/HF ratio, SD1 and SD1/SD2 ratio. Our data does not indicate the alpha-2 exponent to be used for 256 RR intervals and we support the alpha-1 exponent to be used for HRV analysis in this condition.
Resumo:
The fractal analysis of heart rate variability (HRV) has been associated to the chaos theory. We evaluated the association of the fractal exponents of HRV with the time and frequency domain and geometric indices of HRV for short period. HRV was analyzed with a minimal number of 256 RR intervals in the time (SDNN-standard deviation of normal-to-normal R-R intervals, pNN50-percentage of adjacent RR intervals with a difference of duration greater than 50ms and RMSSD-root-mean square of differences between adjacent normal RR intervals in a time interval) and frequency (LF-low frequency, HF-high frequency and LF/HF ratio) domains. The geometric indexes were also analyzed (RRtri-triangular index, TINN-triangular interpolation of RR intervals and Poincaré plot) as well as short and long-term fractal exponents (alpha-1 and alpha-2) of the detrended fluctuation analysis (DFA). We observed strong correlation of the alpha-1 exponent with RMSSD, pNN50, SDNN/RMSSD, LF (nu), HF (nu), LF/HF ratio, SD1 and SD1/Sd2 ratio. In conclusion, we suggest that the alpha-1 exponent could be applied for HRV analysis with a minimal number of 256 RR intervals.
Resumo:
Background: We evaluated the effects of the PCM on the fractal analysis of the HRV in healthy women Method: We evaluated healthy women between 18 and 30 years old. HRV was analyzed in the time (SDNN, RMSSD, NN50 and pNN50) and frequency (LF, HF and LF/HF ratio) domains as well as short and long-term fractal exponents (alpha-1 and alpha-2) of the detrended fluctuation analysis (DFA). HRV was recorded at rest for ten minutes at seated rest and then the women quickly stood up from a seated position in up to three seconds and remained standing for 15 minutes. HRV was recorded at the following time: rest, 0–5 min, 5–10 min and 10–15 min during standing. Results: We observed decrease (p < 0.05) in the time-domain indices of HRV between seated and 10–15 minutes after the volunteer stood up. The LF (ms2) and HF (ms2) indices were also reduced (p < 0.05) at 10–15 minutes after the volunteer stood up compared to seated while the LF (nu) was increased at 5–10 min and 10–15 min (p < 0.05). The short-term alpha-1 exponent was increased (p < 0.05) at all moments investigated compared to seated. Increase in the properties of short-term fractal correlations of heart rate dynamics accompanied by a decrease in the parasympathetic modulation and global HRV was observed in response to the postural change maneuver. Conclusion: We suggest that fractal analysis of HRV is more sensitive than frequency and time-domain analysis of HRV during the postural change maneuver.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Fonoaudiologia - FFC
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The synaptonemal complex (SC) was analyzed in four F1 hybrids of Bos taurus taurus and B. taurus indicus including Gyr-Simmental (G-S), Nelore Simmental (N-S), Gyr-Holstein-Friesian (G-H) and Nelore-Piemontese (N-P). We analysed the frequency of various types of SC abnormalities and the frequency of cells with SC abnormalities. The results were compared with similar observations made on purebred animals. All the animals studied possessed 29 autosomal and one sex bivalent. The frequency of cells with abnormalities in the hybrids were 28.0% in the N-P, 29.1% in the G-S, 33.3% in the N-S and 40.0% in the G-H. The frequency of cells with abnormalities in the four hybrids was 31.5%; 57.9% of these abnormalities occurred in zygotene and 42.0% occurred in pachytene. The comparisons among the hybrids and among the hybrids and their parental breeds showed that the only significant difference was between Gyr and Gyr-Holstein-Friesian animals. Some aspects of the relationship between the frequency of cells with anomalies and the fertility of hybrids are discussed.
Resumo:
This paper deals with transient stability analysis based on time domain simulation on vector processing. This approach requires the solution of a set of differential equations in conjunction of another set of algebraic equations. The solution of the algebraic equations has presented a scalar as sequential set of tasks, and the solution of these equations, on vector computers, has required much more investigations to speedup the simulations. Therefore, the main objective of this paper has been to present methods to solve the algebraic equations using vector processing. The results, using a GRAY computer, have shown that on-line transient stability assessment is feasible.
Resumo:
A transmission line is characterized by the fact that its parameters are distributed along its length. This fact makes the voltages and currents along the line to behave like waves and these are described by differential equations. In general, the differential equations mentioned are difficult to solve in the time domain, due to the convolution integral, but in the frequency domain these equations become simpler and their solutions are known. The transmission line can be represented by a cascade of π circuits. This model has the advantage of being developed directly in the time domain, but there is a need to apply numerical integration methods. In this work a comparison of the model that considers the fact that the parameters are distributed (Universal Line Model) and the fact that the parameters considered concentrated along the line (π circuit model) using the trapezoidal integration method, and Simpson's rule Runge-Kutta in a single-phase transmission line length of 100 km subjected to an operation power. © 2003-2012 IEEE.
Resumo:
Pós-graduação em Fisioterapia - FCT
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
O objetivo deste estudo foi analisar a reprodutibilidade de parâmetros no domínio da frequência do sinal eletromiográfico (EMG) utilizados na caracterização da fadiga muscular localizada. Quinze sujeitos do sexo masculino foram submetidos a um teste de fadiga baseado na extensão isométrica de joelho, sendo realizados em três momentos distintos com intervalos de sete dias. Para avaliar a reprodutibilidade dos dados entres os testes calculou-se o coeficiente de correlação intraclasse (CCI) para a frequência mediana (Fmed) no tempo total de exercício (FmedT), para a Fmed obtida a cada 10% do tempo de exercício (Fmed10%) e para as potências das bandas de frequência, obtidas da divisão do espectro de potência a cada 20 Hz. Os resultados demonstraram: (1) boa reprodutibilidade para a FmedT; (2) boa reprodutibilidade para a Fmed10%; e (3) maior variação no sinal EMG nas bandas de 20 a 120 Hz, no qual se destacam as bandas de 20-40 Hz e de 40-60 Hz, demonstrando maior sensibilidade ao processo de fadiga muscular. Conclui-se que a Fmed é uma variável que apresenta boa reprodutibilidade e que a análise fragmentada do espectro de potência, por meio das bandas de frequência, demonstrou-se sensível as variações que ocorrem no sinal EMG durante a instalação do processo de fadiga, tendo potencial para se tornar um novo método para a caracterização da fadiga muscular localizada.
Resumo:
Primary voice production occurs in the larynx through vibrational movements carried out by vocal folds. However, many problems can affect this complex system resulting in voice disorders. In this context, time-frequency-shape analysis based on embedding phase space plots and nonlinear dynamics methods have been used to evaluate the vocal fold dynamics during phonation. For this purpose, the present work used high-speed video to record the vocal fold movements of three subjects and extract the glottal area time series using an image segmentation algorithm. This signal is used for an optimization method which combines genetic algorithms and a quasi-Newton method to optimize the parameters of a biomechanical model of vocal folds based on lumped elements (masses, springs and dampers). After optimization, this model is capable of simulating the dynamics of recorded vocal folds and their glottal pulse. Bifurcation diagrams and phase space analysis were used to evaluate the behavior of this deterministic system in different circumstances. The results showed that this methodology can be used to extract some physiological parameters of vocal folds and reproduce some complex behaviors of these structures contributing to the scientific and clinical evaluation of voice production. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
[EN]The dynamic throug-soil interaction between nearby pile supported structures in a viscoelastic half-space, under incident S and Rayleigh waves, is numerically studied. To this end, a three-dimensional viscoelastic BEM-FEM formulation for the dynamic analysis of piles and pile groups in the frequency domain is used, where soil is modelled by BEM and piles are simulated by one-dimensional finite elements as Bernouilli beams.