841 resultados para Forensic Medicine
Resumo:
Background: In the international scientific literature, there are few studies that emphasize the presence or absence of hair in forensic facial reconstructions. There are neither Brazilian studies concerning digital facial reconstructions without hair, nor research comparing recognition tests between digital facial reconstructions with hair and without hair. The miscegenation of Brazilian people is considerable. Brazilian people, and, in particular, Brazilian women, even if considered as Caucasoid, may present the hair in very different ways: curly, wavy or straight, blonde, red, brown or black, long or short, etc. For this reason, it is difficult to find a correct type of hair for facial reconstruction (unless, in real cases, some hair is recovered with the skeletal remains). Aims and methods: This study focuses on the performance of three different digital forensic facial reconstructions, without hair, of a Brazilian female subject (based on one international database and two Brazilian databases for soft facial-tissue thickness) and evaluates the digital forensic facial reconstructions comparing them to photographs of the target individual and nine other subjects, employing the recognition method. A total of 22 assessors participated in the recognition process; all of them were familiar with the 10 individuals who composed the face pool. Results and conclusions: The target subject was correctly recognized by 41% of the 22 examiners in the International Pattern, by 32% in the Brazilian Magnetic Resonance Pattern and by 32% in the Brazilian Fresh Cadavers Pattern. The facial reconstructions without hair were correctly recognized using the three databases of facial soft-tissue thickness. The observed results were higher than the results obtained using facial reconstructions with hair, from the same skull, which can indicate that it is better to not use hair, at least when there is no information concerning its characteristics. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Clinical forensic examinations of children suspected of having been sexually abused are increasingly part of the routine of medicolegal institutes. The findings collected from 2005 until 2007 at the Institute of Legal Medicine of the Hanover Medical School were analysed retrospectively. Altogether, 91 children (74 females, 17 males, mean age 8.7 years) were examined. In 87.9% of the cases, the examination had been ordered by the police. In 73.6%, the victim knew the suspected perpetrator well or he was a family member. 40.7% of the children were seen within 72 hours after the alleged abuse. 12.1% of the children had extragenital lesions. In 27% of the victims, marked anogenital injuries were found, which were characteristic of sexual abuse in 9%. In 18 cases (20.2%), swabs were taken for spermatozoa detection. 3 of 17 vaginal smears showed positive test results for sperm up to 21 hours after the incident. No spermatozoa could be detected in 4 anal and 2 oral swabs as well as in one swab taken from the skin of the victim's thigh. In summary, the evaluation shows that early clinical forensic examination of children suspected of having been sexually abused is crucial to document evidence that is highly significant for the investigation and court proceedings. Often suspected sexual child abuse cannot be proved by medical findings alone. Of course, the absence of anogenital injuries does nor rule out sexual abuse.
Resumo:
Medical-forensic examination of sexual assault victims and alleged offenders is a common task of many forensic institutes. In the current study, the results from samples taken at the Institute of Legal Medicine, Hanover Medical School, during a period from 2005 to 2007 were retrospectively evaluated. In total, 292 victims (283 females and nine males) and 88 suspects were examined. At the time of the assault, 41.8% of the victims and 43.2% of the alleged perpetrators were under the influence of alcohol. Injuries were found in 84.9% of the victims and 39.8% of the suspects. Thirty victims (10.3%) reported having been choked or strangled. Cytology was performed in 218 victims. In 81 cases (38.0%), sperm could be detected in vaginal swabs up to 3 days post-assault. In seven (18.9%) out of 37 anal samples, evidence of sperm could be found 24 h post-assault. None of 22 oral samples was positive for sperm. Out of 301 sexual assault cases, 171 could be proved by means of medical-forensic examination. In summary, our evaluation shows that an early medical-forensic examination of both victim and suspect can secure numerous medical findings. Furthermore, persons intoxicated by alcohol, handicapped persons and persons with psychiatric disorders are more vulnerable to become a sexual assault victim.
Resumo:
Postmortem imaging has gained prominence in the field of forensic pathology. Even with experience in this procedure, difficulties arise in evaluating pathologies of the postmortem lung. The effect of postmortem ventilation with applied pressures of 10, 20, 30 and 40mbar was evaluated in 10 corpses using simultaneous postmortem computed tomography (pmCT) scans. Ventilation was performed via a continuous positive airway pressure mask (n=5), an endotracheal tube (n=4) and a laryngeal mask (n=1) using a portable home care ventilator. The lung volumes were measured and evaluated by a segmentation technique based on reconstructed CT data. The resulting changes to the lungs were analyzed. Postmortem ventilation at 40mbar induced a significant (p<0.05) unfolding of the lungs, with a mean volume increase of 1.32l. Small pathologies of the lung such as scarring and pulmonary nodules as well as emphysema were revealed, while inner livores were reduced. Even though lower ventilation pressures resulted in a significant (p<0.05) volume increase, pathologies were best evaluated when a pressure of 40mbar was applied, due to the greater reduction of the inner livores. With the ventilation-induced expansion of the lungs, a decrease in the heart diameter and gaseous distension of the stomach was recognized. In conclusion, postmortem ventilation is a feasible method for improving evaluation of the lungs and detection of small lung pathologies. This is because of the volume increase in the air-filled portions of the lung and reduced appearance of inner livores.
Resumo:
Based on only one objective and several subjective signs, the forensic classification of strangulation incidents concerning their life-threatening quality can be problematic. Reflecting that it is almost impossible to detect internal injuries of the neck with the standard forensic external examination, we examined 14 persons who have survived manual and ligature strangulation or forearm choke holds using MRI technique (1.5-T scanner). Two clinical radiologists evaluated the neck findings independently. The danger to life was evaluated based on the "classical" external findings alone and in addition to the radiological data. We observed hemorrhaging in the subcutaneous fatty tissue of the neck in ten cases. Other frequent findings were hemorrhages of the neck and larynx muscles, the lymph nodes, the pharynx, and larynx soft tissues. Based on the classical forensic strangulation findings with MRI, eight of the cases were declared as life-endangering incidents, four of them without the presence of petechial hemorrhage but with further signs of impaired brain function due to hypoxia. The accuracy of future forensic classification of the danger to life will probably be increased when it is based not only on one objective and several subjective signs but also on the evidence of inner neck injuries. However, further prospective studies including larger cohorts are necessary to clarify the value of the inner neck injuries in the forensic classification of surviving strangulation victims.
Resumo:
Dental identification is the most valuable method to identify human remains in single cases with major postmortem alterations as well as in mass casualties because of its practicability and demanding reliability. Computed tomography (CT) has been investigated as a supportive tool for forensic identification and has proven to be valuable. It can also scan the dentition of a deceased within minutes. In the present study, we investigated currently used restorative materials using ultra-high-resolution dual-source CT and the extended CT scale for the purpose of a color-encoded, in scale, and artifact-free visualization in 3D volume rendering. In 122 human molars, 220 cavities with 2-, 3-, 4- and 5-mm diameter were prepared. With presently used filling materials (different composites, temporary filling materials, ceramic, and liner), these cavities were restored in six teeth for each material and cavity size (exception amalgam n = 1). The teeth were CT scanned and images reconstructed using an extended CT scale. Filling materials were analyzed in terms of resulting Hounsfield units (HU) and filling size representation within the images. Varying restorative materials showed distinctively differing radiopacities allowing for CT-data-based discrimination. Particularly, ceramic and composite fillings could be differentiated. The HU values were used to generate an updated volume-rendering preset for postmortem extended CT scale data of the dentition to easily visualize the position of restorations, the shape (in scale), and the material used which is color encoded in 3D. The results provide the scientific background for the application of 3D volume rendering to visualize the human dentition for forensic identification purposes.
Resumo:
Introduction The purpose of this paper is to present the technical specifications of the Forensic Reference Phantom (FRP), to test its behavior relative to organic test materials, and discuss potential applications of the phantom in forensic radiology. Materials and method The FRP prototype is made of synthetic materials designed to simulate the computed tomography (CT) attenuation of water. It has six bore holes that accommodate multiuse containers. These containers were filled with test materials and scanned at 80 kVp, 120 kVp, and 140 kVp. X-ray attenuation was measured by two readers. Intra- and inter-reader reliability was assessed using the intra-class correlation coefficient (ICC). Significance levels between mean CT numbers at 80 kVp, 120 kVp, and 140 kVp were assessed with the Friedman-test. The T-test was used to assess significance levels between the FRP and water. Results Overall mean CT numbers ranged from −3.0–3.7HU for the FRP; −1000.3–−993.5HU for air; −157.7– −108.1HU for oil; 35.5–42.0HU for musle tissue; and 1301.5–2354.8HU for cortical bone. Inter-reader and intra-reader reliability were excellent (ICC>0.994; and ICC=0.999 respectively). CT numbers were significantly different at different energy levels. There was no significant difference between the attenuation of the FRP and water. Conclusions The FRP is a new tool for quality assurance and research in forensic radiology. The mean CT attenuation of the FRP is equivalent to water. The phantom can be scanned during routine post-mortem CT to assess the composition of unidentified objects. In addition, the FRP may be used to investigate new imaging algorithms and scan protocols in forensic radiology.
Resumo:
Post-mortem MR (PMMR) imaging is a powerful diagnostic tool with a wide scope in forensic radiology. In the past 20 years, PMMR has been used as both an adjunct and an alternative to autopsy. The role of PMMR in forensic death investigations largely depends on the rules and habits of local jurisdictions, availability of experts, financial resources, and individual case circumstances. PMMR images are affected by post-mortem changes, including position-dependent sedimentation, variable body temperature and decomposition. Investigators must be familiar with the appearance of normal findings on PMMR to distinguish them from disease or injury. Coronal whole-body images provide a comprehensive overview. Notably, short tau inversion–recovery (STIR) images enable investigators to screen for pathological fluid accumulation, to which we refer as “forensic sentinel sign”. If scan time is short, subsequent PMMR imaging may be focussed on regions with a positive forensic sentinel sign. PMMR offers excellent anatomical detail and is especially useful to visualize pathologies of the brain, heart, subcutaneous fat tissue and abdominal organs. PMMR may also be used to document skeletal injury. Cardiovascular imaging is a core area of PMMR imaging and growing evidence indicates that PMMR is able to detect ischaemic injury at an earlier stage than traditional autopsy and routine histology. The aim of this review is to present an overview of normal findings on forensic PMMR, provide general advice on the application of PMMR and summarise the current literature on PMMR imaging of the head and neck, cardiovascular system, abdomen and musculoskeletal system.
Resumo:
Until today, most of the documentation of forensic relevant medical findings is limited to traditional 2D photography, 2D conventional radiographs, sketches and verbal description. There are still some limitations of the classic documentation in forensic science especially if a 3D documentation is necessary. The goal of this paper is to demonstrate new 3D real data based geo-metric technology approaches. This paper present approaches to a 3D geo-metric documentation of injuries on the body surface and internal injuries in the living and deceased cases. Using modern imaging methods such as photogrammetry, optical surface and radiological CT/MRI scanning in combination it could be demonstrated that a real, full 3D data based individual documentation of the body surface and internal structures is possible in a non-invasive and non-destructive manner. Using the data merging/fusing and animation possibilities, it is possible to answer reconstructive questions of the dynamic development of patterned injuries (morphologic imprints) and to evaluate the possibility, that they are matchable or linkable to suspected injury-causing instruments. For the first time, to our knowledge, the method of optical and radiological 3D scanning was used to document the forensic relevant injuries of human body in combination with vehicle damages. By this complementary documentation approach, individual forensic real data based analysis and animation were possible linking body injuries to vehicle deformations or damages. These data allow conclusions to be drawn for automobile accident research, optimization of vehicle safety (pedestrian and passenger) and for further development of crash dummies. Real 3D data based documentation opens a new horizon for scientific reconstruction and animation by bringing added value and a real quality improvement in forensic science.
Resumo:
In their daily forensic casework, the authors experienced discrepancies of tracheobronchial content findings between postmortem computed tomography (PMCT) and autopsy to an extent previously unnoticed in the literature. The goal of this study was to evaluate such discrepancies in routine forensic cases. A total of 327 cases that underwent PMCT prior to routine forensic autopsy were retrospectively evaluated for tracheal and bronchial contents according to PMCT and autopsy findings. Hounsfield unit (HU) values of tracheobronchial contents, causes of death, and presence of pulmonary edema were assessed in mismatching and matching cases. Comparing contents in PMCT and autopsy in each of the separately evaluated compartments of the respiratory tract low positive predictive values were assessed (trachea, 38.2 %; main bronchi, 40 %; peripheral bronchi, 69.1 %) indicating high discrepancy rates. The majority of tracheobronchial contents were viscous stomach contents in matching cases and low radiodensity materials (i.e., HU < 30) in mismatching cases. The majority of causes of death were cardiac related in the matching cases and skull/brain trauma in the mismatching cases. In mismatching cases, frequency of pulmonary edema was significantly higher than in matching cases. It can be concluded that discrepancies in tracheobronchial contents observed between PMCT and routine forensic autopsy occur in a considerable number of cases. Discrepancies may be explained by the runoff of contents via nose and mouth during external examination and the flow back of tracheal and main bronchial contents into the lungs caused by upright movement of the respiratory tract at autopsy.
Resumo:
PURPOSE The purpose of this study was to compare postmortem computed tomography with forensic autopsy regarding their diagnostic reliability of differentiating between pre-existing cerebral edema and physiological postmortem brain swelling. MATERIALS AND METHODS The study collective included a total of 109 cases (n=109/200, 83 male, 26 female, mean age: 53.2 years) and were retrospectively evaluated for the following parameters (as related to the distinct age groups and causes of death): tonsillar herniation, the width of the outer and inner cerebrospinal fluid spaces and the radiodensity measurements (in Hounsfield Units) of the gray and white matter. The results were compared with the findings of subsequent autopsies as the gold standard for diagnosing cerebral edema. p-Values <0.05 were considered statistically significant. RESULTS Cerebellar edema (despite normal postmortem swelling) can be reliably assessed using postmortem computed tomography and is indicated by narrowed temporal horns and symmetrical herniation of the cerebellar tonsils (p<0.001). There was a significant difference (p<0.001) between intoxication (or asphyxia) and all other causes of death; the former causes demonstrated higher deviations of the attenuation between white and gray matter (>20 Hounsfield Units), and the gray to white matter ratio was >1.58 when leukoencephalopathy was excluded. CONCLUSIONS Despite normal postmortem changes, generalized brain edema can be differentiated on postmortem computed tomography, and white and gray matter Hounsfield measurements help to determine the cause of death in cases of intoxication or asphyxia. Racking the brain about feasible applications for a precise and reliable brain diagnostic forensic radiology method has just begun.