910 resultados para Forecasts
Resumo:
This study aims to determine the potential origin of Olea pollen recorded in Badajoz in the Southwest of the Iberian Peninsula during 2009–2011. This was achieved using a combination of daily average and diurnal (hourly) airborne Olea pollen counts recorded at Badajoz (south-western Spain) and Évora (south-eastern Portugal), an inventory of olive groves in the studied area and air mass trajectory calculations computed using the HYSPLIT model. Examining olive pollen episodes at Badajoz that had distinctly different diurnal cycles in olive pollen in relation to the mean, allowed us to identify three different scenarios where olive pollen can be transported to the city from either distant or nearby sources during conditions with slow air mass movements. Back trajectory analysis showed that olive pollen can be transported to Badajoz from the West on prevailing winds, either directly or on slow moving air masses, and from high densities of olive groves situated to the Southeast (e.g. Andalucía). Regional scale transport of olive pollen can result in increased nighttime concentrations of this important aeroallergen. This could be particularly important in Mediterranean countries where people can be outdoors during this time due to climate and lifestyle. Such studies that examine sources and the atmospheric transport of pollen are valuable for allergy sufferers and health care professionals because the information can be incorporated into forecasts, the outputs of which are used for avoiding exposure to aeroallergens and planning medication. The results of studies of this nature can also be used for examining gene flow in this important agricultural crop.
Resumo:
The meteorological and chemical transport model WRF-Chem was implemented to forecast PM10 concentrations over Poland. WRF-Chem version 3.5 was configured with three one way nested domains using the GFS meteorological data and the TNO MACC II emissions. Forecasts, with 48h lead time, were run for a winter and summer period 2014. WRF-Chem in general captures the variability in observed PM10 concentrations, but underestimates some peak concentrations during winter-time. The peaks coincide with either stable atmospheric condition during nighttime in the lower part of the planetary boundary layer or on days with very low surface temperatures. Such episodes lead to increased combustion in residential heating, where hard coal is the main fuel in Poland. This suggests that a key to improvement in the model performance for the peak concentrations is to focus on the simulation of PBL processes and the distribution of emissions with high resolution in WRF-Chem.
Resumo:
The Weather Research and Forecasting model, integrated online with chemistry module, is a multi-scale model suitable for both research and operational forecasts of meteorology and air quality. It is used by many institutions for a variety of applications. In this study, the WRF v3.5 with chemistry (WRF-Chem) is applied to the area of Poland, for a period of 3-20 July 2006, when high concentrations of ground level ozone were observed. The meteorological and chemistry simulations were initiated with ERA-Interim reanalysis and TNO MACC II emissions database, respectively. The model physical parameterization includes RRTM shortwave radiation, Kain-Fritsch cumulus scheme, Purdue Lin microphysics and ACM2 PBL, established previously as the optimal configuration. Chemical mechanism used for the study was RADM2 with MADE/SORGAM aerosols. Simulations were performed for three one-way nested domains covering Europe (36 km x 36 km), Central Europe (12 km x 12 km) and Poland (4 km x 4 km). The results from the innermost domain were analyzed and compared to measurements of ozone concentration at three stations in different environments. The results show underestimation of observed values and daily amplitude of ozone concentrations.
Resumo:
This paper applies Gaussian estimation methods to continuous time models for modelling overseas visitors into the UK. The use of continuous time modelling is widely used in economics and finance but not in tourism forecasting. Using monthly data for 1986–2010, various continuous time models are estimated and compared to autoregressive integrated moving average (ARIMA) and autoregressive fractionally integrated moving average (ARFIMA) models. Dynamic forecasts are obtained over different periods. The empirical results show that the ARIMA model performs very well, but that the constant elasticity of variance (CEV) continuous time model has the lowest root mean squared error (RMSE) over a short period.
Resumo:
Previous research on the prediction of fiscal aggregates has shown evidence that simple autoregressive models often provide better forecasts of fiscal variables than multivariate specifications. We argue that the multivariate models considered by previous studies are small-scale, probably burdened by overparameterization, and not robust to structural changes. Bayesian Vector Autoregressions (BVARs), on the other hand, allow the information contained in a large data set to be summarized efficiently, and can also allow for time variation in both the coefficients and the volatilities. In this paper we explore the performance of BVARs with constant and drifting coefficients for forecasting key fiscal variables such as government revenues, expenditures, and interest payments on the outstanding debt. We focus on both point and density forecasting, as assessments of a country’s fiscal stability and overall credit risk should typically be based on the specification of a whole probability distribution for the future state of the economy. Using data from the US and the largest European countries, we show that both the adoption of a large system and the introduction of time variation help in forecasting, with the former playing a relatively more important role in point forecasting, and the latter being more important for density forecasting.
Resumo:
In this paper, a stochastic programming approach is proposed for trading wind energy in a market environment under uncertainty. Uncertainty in the energy market prices is the main cause of high volatility of profits achieved by power producers. The volatile and intermittent nature of wind energy represents another source of uncertainty. Hence, each uncertain parameter is modeled by scenarios, where each scenario represents a plausible realization of the uncertain parameters with an associated occurrence probability. Also, an appropriate risk measurement is considered. The proposed approach is applied on a realistic case study, based on a wind farm in Portugal. Finally, conclusions are duly drawn. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this work a mixed integer optimization linear programming (MILP) model was applied to mixed line rate (MLR) IP over WDM and IP over OTN over WDM (with and without OTN grooming) networks, with aim to reduce network energy consumption. Energy-aware and energy-aware & short-path routing techniques were used. Simulations were made based on a real network topology as well as on forecasts of traffic matrix based on statistical data from 2005 up to 2017. Energy aware routing optimization model on IPoWDM network, showed the lowest energy consumption along all years, and once compared with energy-aware & short-path routing, has led to an overall reduction in energy consumption up to 29%, expecting to save even more than shortest-path routing. © 2014 IEEE.
Resumo:
Dissertação para a obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia
Resumo:
Dissertação apresentada ao Instituto Politécnico do Porto para obtenção do Grau de Mestre em Logística
Resumo:
Electricity markets are complex environments, involving a large number of different entities, with specific characteristics and objectives, making their decisions and interacting in a dynamic scene. Game-theory has been widely used to support decisions in competitive environments; therefore its application in electricity markets can prove to be a high potential tool. This paper proposes a new scenario analysis algorithm, which includes the application of game-theory, to evaluate and preview different scenarios and provide players with the ability to strategically react in order to exhibit the behavior that better fits their objectives. This model includes forecasts of competitor players’ actions, to build models of their behavior, in order to define the most probable expected scenarios. Once the scenarios are defined, game theory is applied to support the choice of the action to be performed. Our use of game theory is intended for supporting one specific agent and not for achieving the equilibrium in the market. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. The scenario analysis algorithm has been tested within MASCEM and our experimental findings with a case study based on real data from the Iberian Electricity Market are presented and discussed.
Resumo:
As empresas nacionais deparam-se com a necessidade de responder ao mercado com uma grande variedade de produtos, pequenas séries e prazos de entrega reduzidos. A competitividade das empresas num mercado global depende assim da sua eficiência, da sua flexibilidade, da qualidade dos seus produtos e de custos reduzidos. Para se atingirem estes objetivos é necessário desenvolverem-se estratégias e planos de ação que envolvem os equipamentos produtivos, incluindo: a criação de novos equipamentos complexos e mais fiáveis, alteração dos equipamentos existentes modernizando-os de forma a responderem às necessidades atuais e a aumentar a sua disponibilidade e produtividade; e implementação de políticas de manutenção mais assertiva e focada no objetivo de “zero avarias”, como é o caso da manutenção preditiva. Neste contexto, o objetivo principal deste trabalho consiste na previsão do instante temporal ótimo da manutenção de um equipamento industrial – um refinador da fábrica de Mangualde da empresa Sonae Industria, que se encontra em funcionamento contínuo 24 horas por dia, 365 dias por ano. Para o efeito são utilizadas medidas de sensores que monitorizam continuamente o estado do refinador. A principal operação de manutenção deste equipamento é a substituição de dois discos metálicos do seu principal componente – o desfibrador. Consequentemente, o sensor do refinador analisado com maior detalhe é o sensor que mede a distância entre os dois discos do desfibrador. Os modelos ARIMA consistem numa abordagem estatística avançada para previsão de séries temporais. Baseados na descrição da autocorrelação dos dados, estes modelos descrevem uma série temporal como função dos seus valores passados. Neste trabalho, a metodologia ARIMA é utilizada para determinar um modelo que efetua uma previsão dos valores futuros do sensor que mede a distância entre os dois discos do desfibrador, determinando-se assim o momento ótimo da sua substituição e evitando paragens forçadas de produção por ocorrência de uma falha por desgaste dos discos. Os resultados obtidos neste trabalho constituem uma contribuição científica importante para a área da manutenção preditiva e deteção de falhas em equipamentos industriais.
Resumo:
Forecasting future sales is one of the most important issues that is beyond all strategic and planning decisions in effective operations of retail businesses. For profitable retail businesses, accurate demand forecasting is crucial in organizing and planning production, purchasing, transportation and labor force. Retail sales series belong to a special type of time series that typically contain trend and seasonal patterns, presenting challenges in developing effective forecasting models. This work compares the forecasting performance of state space models and ARIMA models. The forecasting performance is demonstrated through a case study of retail sales of five different categories of women footwear: Boots, Booties, Flats, Sandals and Shoes. On both methodologies the model with the minimum value of Akaike's Information Criteria for the in-sample period was selected from all admissible models for further evaluation in the out-of-sample. Both one-step and multiple-step forecasts were produced. The results show that when an automatic algorithm the overall out-of-sample forecasting performance of state space and ARIMA models evaluated via RMSE, MAE and MAPE is quite similar on both one-step and multi-step forecasts. We also conclude that state space and ARIMA produce coverage probabilities that are close to the nominal rates for both one-step and multi-step forecasts.
Resumo:
Neste documento, são investigados vários métodos usados na inteligência artificial, com o objetivo de obter previsões precisas da evolução dos mercados financeiros. O uso de ferramentas lineares como os modelos AR, MA, ARMA e GARCH têm muitas limitações, pois torna-se muito difícil adaptá-los às não linearidades dos fenómenos que ocorrem nos mercados. Pelas razões anteriormente referidas, os algoritmos como as redes neuronais dinâmicas (TDNN, NARX e ESN), mostram uma maior capacidade de adaptação a estas não linearidades, pois não fazem qualquer pressuposto sobre as distribuições de probabilidade que caracterizam estes mercados. O facto destas redes neuronais serem dinâmicas, faz com que estas exibam um desempenho superior em relação às redes neuronais estáticas, ou outros algoritmos que não possuem qualquer tipo de memória. Apesar das vantagens reveladas pelas redes neuronais, estas são um sistema do tipo black box, o que torna muito difícil extrair informação dos pesos da rede. Isto significa que estes algoritmos devem ser usados com precaução, pois podem tornar-se instáveis.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics
Resumo:
The aim of this work project is to find a model that is able to accurately forecast the daily Value-at-Risk for PSI-20 Index, independently of the market conditions, in order to expand empirical literature for the Portuguese stock market. Hence, two subsamples, representing more and less volatile periods, were modeled through unconditional and conditional volatility models (because it is what drives returns). All models were evaluated through Kupiec’s and Christoffersen’s tests, by comparing forecasts with actual results. Using an out-of-sample of 204 observations, it was found that a GARCH(1,1) is an accurate model for our purposes.