790 resultados para Forecasting Volatility
Resumo:
The relationship between price volatility and competition is examined. Atheoretic, vector auto regressions on farm prices of wheat and retail prices of derivatives (flour, bread, pasta, bulgur and cookies) are compared to results from a dynamic, simultaneous-equations model with theory-based farm-to-retail linkages. Analytical results yield insights about numbers of firms and their impacts on demand- and supply-side multipliers, but the applications to Turkish time series (1988:1-1996:12) yield mixed results.
Resumo:
As laid out in its convention there are 8 different objectives for ECMWF. One of the major objectives will consist of the preparation, on a regular basis, of the data necessary for the preparation of medium-range weather forecasts. The interpretation of this item is that the Centre will make forecasts once a day for a prediction period of up to 10 days. It is also evident that the Centre should not carry out any real weather forecasting but merely disseminate to the member countries the basic forecasting parameters with an appropriate resolution in space and time. It follows from this that the forecasting system at the Centre must from the operational point of view be functionally integrated with the Weather Services of the Member Countries. The operational interface between ECMWF and the Member Countries must be properly specified in order to get a reasonable flexibility for both systems. The problem of making numerical atmospheric predictions for periods beyond 4-5 days differs substantially from 2-3 days forecasting. From the physical point we can define a medium range forecast as a forecast where the initial disturbances have lost their individual structure. However we are still interested to predict the atmosphere in a similar way as in short range forecasting which means that the model must be able to predict the dissipation and decay of the initial phenomena and the creation of new ones. With this definition, medium range forecasting is indeed very difficult and generally regarded as more difficult than extended forecasts, where we usually only predict time and space mean values. The predictability of atmospheric flow has been extensively studied during the last years in theoretical investigations and by numerical experiments. As has been discussed elsewhere in this publication (see pp 338 and 431) a 10-day forecast is apparently on the fringe of predictability.
Resumo:
The Normal Quantile Transform (NQT) has been used in many hydrological and meteorological applications in order to make the Cumulated Distribution Function (CDF) of the observed, simulated and forecast river discharge, water level or precipitation data Gaussian. It is also the heart of the meta-Gaussian model for assessing the total predictive uncertainty of the Hydrological Uncertainty Processor (HUP) developed by Krzysztofowicz. In the field of geo-statistics this transformation is better known as the Normal-Score Transform. In this paper some possible problems caused by small sample sizes when applying the NQT in flood forecasting systems will be discussed and a novel way to solve the problem will be outlined by combining extreme value analysis and non-parametric regression methods. The method will be illustrated by examples of hydrological stream-flow forecasts.
Resumo:
This paper considers how trading volume impacts upon the first three moments of REIT returns. Consistent with previous studies of the broader stock market, we find that volume is a significant factor with respect to both returns and volatility. We also find evidence supportive of the Hong & Stein’s (2003) Investor Heterogeneity Theory with respect to the finding that skewness in REIT index returns is significantly related to volume. Furthermore, we also report findings that show the influence of the variability of volume with skewness.
Resumo:
It is widely accepted that some of the most accurate Value-at-Risk (VaR) estimates are based on an appropriately specified GARCH process. But when the forecast horizon is greater than the frequency of the GARCH model, such predictions have typically required time-consuming simulations of the aggregated returns distributions. This paper shows that fast, quasi-analytic GARCH VaR calculations can be based on new formulae for the first four moments of aggregated GARCH returns. Our extensive empirical study compares the Cornish–Fisher expansion with the Johnson SU distribution for fitting distributions to analytic moments of normal and Student t, symmetric and asymmetric (GJR) GARCH processes to returns data on different financial assets, for the purpose of deriving accurate GARCH VaR forecasts over multiple horizons and significance levels.
Resumo:
We consider forecasting with factors, variables and both, modeling in-sample using Autometrics so all principal components and variables can be included jointly, while tackling multiple breaks by impulse-indicator saturation. A forecast-error taxonomy for factor models highlights the impacts of location shifts on forecast-error biases. Forecasting US GDP over 1-, 4- and 8-step horizons using the dataset from Stock and Watson (2009) updated to 2011:2 shows factor models are more useful for nowcasting or short-term forecasting, but their relative performance declines as the forecast horizon increases. Forecasts for GDP levels highlight the need for robust strategies, such as intercept corrections or differencing, when location shifts occur as in the recent financial crisis.
Resumo:
Many macroeconomic series, such as U.S. real output growth, are sampled quarterly, although potentially useful predictors are often observed at a higher frequency. We look at whether a mixed data-frequency sampling (MIDAS) approach can improve forecasts of output growth. The MIDAS specification used in the comparison uses a novel way of including an autoregressive term. We find that the use of monthly data on the current quarter leads to significant improvement in forecasting current and next quarter output growth, and that MIDAS is an effective way to exploit monthly data compared with alternative methods.
Resumo:
In this paper we provide an alternative explanation for why illegal immigration can exhibit substantial fluctuation. We develop a model economy in which migrants make decisions in the face of uncertain border enforcement and lump-sum transfers from the host country. The uncertainty is extrinsic in nature, a sunspot, and arises as a result of ambiguity regarding the commodity price of money. Migrants are restricted from participating in state-contingent insurance markets in the host country, whereas host country natives are not. Volatility in migration flows stems from two distinct sources: the tension between transfers inducing migration and enforcement discouraging it and secondly the existence of a sunspot. Finally, we examine the impact of a change in tax/transfer policies by the government on migration.
Effects of temporal resolution of input precipitation on the performance of hydrological forecasting
Resumo:
Flood prediction systems rely on good quality precipitation input data and forecasts to drive hydrological models. Most precipitation data comes from daily stations with a good spatial coverage. However, some flood events occur on sub-daily time scales and flood prediction systems could benefit from using models calibrated on the same time scale. This study compares precipitation data aggregated from hourly stations (HP) and data disaggregated from daily stations (DP) with 6-hourly forecasts from ECMWF over the time period 1 October 2006–31 December 2009. The HP and DP data sets were then used to calibrate two hydrological models, LISFLOOD-RR and HBV, and the latter was used in a flood case study. The HP scored better than the DP when evaluated against the forecast for lead times up to 4 days. However, this was not translated in the same way to the hydrological modelling, where the models gave similar scores for simulated runoff with the two datasets. The flood forecasting study showed that both datasets gave similar hit rates whereas the HP data set gave much smaller false alarm rates (FAR). This indicates that using sub-daily precipitation in the calibration and initiation of hydrological models can improve flood forecasting.