941 resultados para Flower-like structures
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In general the term "Lagrangian coherent structure" (LCS) is used to make reference about structures whose properties are similar to a time-dependent analog of stable and unstable manifolds from a hyperbolic fixed point in Hamiltonian systems. Recently, the term LCS was used to describe a different type of structure, whose properties are similar to those of invariant tori in certain classes of two-dimensional incompressible flows. A new kind of LCS was obtained. It consists of barriers, called robust tori that block the trajectories in certain regions of the phase space. We used the Double-Gyre Flow system as the model. In this system, the robust tori play the role of a skeleton for the dynamics and block, horizontally, vortices that come from different parts of the phase space. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Der proteolytische Verdau von Proteinen in Peptide ist ein wichtiger Schritt in der Tandem-Massenspektrometrie. Dabei werden Peptide fragmentiert und die sich ergebenden Fragmentionen geben Aufschluss über die Aminosäuresequenz des zu untersuchenden Proteins. Dabei sind für die Fragmentierung sowohl Länge und Sequenz, als auch der Ladungszustand des Peptids ungemein wichtig. Diese Parameter bedingen sich durch Endoproteasen, die für den proteolytischen Verdau eingesetzt werden. Eine Voraussetzung hierfür ist die Spezifität der Protease. Trypsin ist bei weitem die gebräuchlichste Protease zur massenspektrometrischen Probenvorbereitung. Allerdings bietet Trypsin keine Komplettlösung. Je nach Fragestellung und Applikation müssen weitere Proteasen eingesetzt werden, um eine komplette Sequenzabdeckung zu gewährleisten und möglichst alle posttranslationalen Modifikationen nachzuweisen, oder bestimmte Proteomklassen (z.B Phosphoproteom
Resumo:
An AH (affine hypersurface) structure is a pair comprising a projective equivalence class of torsion-free connections and a conformal structure satisfying a compatibility condition which is automatic in two dimensions. They generalize Weyl structures, and a pair of AH structures is induced on a co-oriented non-degenerate immersed hypersurface in flat affine space. The author has defined for AH structures Einstein equations, which specialize on the one hand to the usual Einstein Weyl equations and, on the other hand, to the equations for affine hyperspheres. Here these equations are solved for Riemannian signature AH structures on compact orientable surfaces, the deformation spaces of solutions are described, and some aspects of the geometry of these structures are related. Every such structure is either Einstein Weyl (in the sense defined for surfaces by Calderbank) or is determined by a pair comprising a conformal structure and a cubic holomorphic differential, and so by a convex flat real projective structure. In the latter case it can be identified with a solution of the Abelian vortex equations on an appropriate power of the canonical bundle. On the cone over a surface of genus at least two carrying an Einstein AH structure there are Monge-Amp`ere metrics of Lorentzian and Riemannian signature and a Riemannian Einstein K"ahler affine metric. A mean curvature zero spacelike immersed Lagrangian submanifold of a para-K"ahler four-manifold with constant para-holomorphic sectional curvature inherits an Einstein AH structure, and this is used to deduce some restrictions on such immersions.
Resumo:
A DNA helicase, called chloroplast DNA (ctDNA) helicase II, was purified to apparent homogeneity from pea (Pisum sativum). The enzyme contained intrinsic, single-stranded, DNA-dependent ATPase activity and an apparent molecular mass of 78 kD on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The DNA helicase was markedly stimulated by DNA substrates with fork-like replication structures. A 5′-tailed fork was more active than the 3′-tailed fork, which itself was more active than substrates without a fork. The direction of unwinding was 3′ to 5′ along the bound strand, and it failed to unwind blunt-ended duplex DNA. DNA helicase activity required only ATP or dATP hydrolysis. The enzyme also required a divalent cation (Mg2+>Mn2+>Ca2+) for its unwinding activity and was inhibited at 200 mm KCl or NaCl. This enzyme could be involved in the replication of ctDNA. The DNA major groove-intercalating ligands nogalamycin and daunorubicin were inhibitory to unwinding (Ki approximately 0.85 μm and 2.2 μm, respectively) and ATPase (Ki approximately 1.3 μm and 3.0 μm, respectively) activities of pea ctDNA helicase II, whereas ellipticine, etoposide (VP-16), and camptothecin had no effect on the enzyme activity. These ligands may be useful in further studies of the mechanisms of chloroplast helicase activities.
Resumo:
We present a method (ENERGI) for extracting energy-like quantities from a data base of protein structures. In this paper, we use the method to generate pairwise additive amino acid "energy" scores. These scores are obtained by iteration until they correctly discriminate a set of known protein folds from decoy conformations. The method succeeds in lattice model tests and in the gapless threading problem as defined by Maiorov and Crippen [Maiorov, V. N. & Crippen, G. M. (1992) J. Mol. Biol. 227, 876-888]. A more challenging test of threading a larger set of test proteins derived from the representative set of Hobohm and Sander [Hobohm, U. & Sander, C. (1994) Protein Sci. 3, 522-524] is used as a "workbench" for exploring how the ENERGI scores depend on their parameter sets.
Resumo:
It is questionable whether activities like construction, including maintenance and repair, can be considered a single entity or industry - on the basis that different sectors of construction/maintenance use fundamentally distinct resource and skill bases. This creates a number of issues including the development of competition and reform policy. de Valance deployed the Structure-Conduct-Performance model (SCP) to delineate sectors of new/installation construction activity and, in doing so, proposes that there exists multiple market structures in a given project. The purpose of this paper is to apply the SCP model to a different sector of construction activity, that is air conditioning maintenance and test de Valance's proposition concerning the existence of multiple market structures in a supply chain but this time to a built facility. The research method combines secondary data concerning the "Structure" component of the SCP model and primary data with regard to the "Conduct" and "Performance" parts of the SCP model. The results provide further support (beyond de Valance's analysis of new/installation activity) that a sector system approach using the SCP model is a more effective way to analyse market structures in construction activity. This paper also supports de Valance's proposition concerning the existence of multiple market structures in a supply chain to a project/facility.
Resumo:
As a part of vital infrastructure and transportation networks, bridge structures must function safely at all times. However, due to heavier and faster moving vehicular loads and function adjustment, such as Busway accommodation, many bridges are now operating at an overload beyond their design capacity. Additionally, the huge renovation and replacement costs always make the infrastructure owners difficult to undertake. Structural health monitoring (SHM) is set to assess condition and foresee probable failures of designated bridge(s), so as to monitor the structural health of the bridges. The SHM systems proposed recently are incorporated with Vibration-Based Damage Detection (VBDD) techniques, Statistical Methods and Signal processing techniques and have been regarded as efficient and economical ways to solve the problem. The recent development in damage detection and condition assessment techniques based on VBDD and statistical methods are reviewed. The VBDD methods based on changes in natural frequencies, curvature/strain modes, modal strain energy (MSE) dynamic flexibility, artificial neural networks (ANN) before and after damage and other signal processing methods like Wavelet techniques and empirical mode decomposition (EMD) / Hilbert spectrum methods are discussed here.
Resumo:
Noise and vibration in complex ship structures are becoming a prominent issue for ship building industry and ship companies due to the constant demand of building faster ships of lighter weight, and the stringent noise and libration regulation of the industry. In order to retain the full benefit of building faster ships without compromising too much on ride comfort and safety, noise and vibration control needs to be implemented. Due to the complexity of ship structures, the coupling of different wave types and multiple wave propagation paths, active control of global hull modes is difficult to implement and very expensive. Traditional passive control such as adding damping materials is only effective in the high frequency range. However, most severe damage to ship structures is caused by large structural deformation of hull structures and high dynamic stress concentration at low frequencies. The most discomfort and fatigue of passengers and the crew onboard ships is also due to the low frequency noise and vibration. Innovative approaches are therefore, required to attenuate the noise and vibration at low frequencies. This book was developed from several specialized research topics on vibration and vibration control of ship structures, mostly from the author's own PhD work at the University of Western Australia. The book aims to provide a better understanding of vibration characteristics of ribbed plate structures, plate/plate coupled structures and the mechanism governing wave propagation and attenuation in periodic and irregular ribbed structures as well as in complex ship structures. The book is designed to be a reference book for ship builders, vibro-acoustic engineers and researchers. The author also hopes that the book can stimulate more exciting future work in this area of research. It is the author's humble desire that the book can be some use for those who purchase it. This book is divided into eight chapters. Each chapter focuses on providing solution to address a particular issue on vibration problems of ship structures. A brief summary of each chapter is given in the general introduction. All chapters are inter-dependent to each other to form an integration volume on the subject of vibration and vibration control of ship structures and alike. I am in debt to many people in completing this work. In particular, I would like to thank Professor J. Pan, Dr N.H. Farag, Dr K. Sum and many others from the University of Western Australia for useful advices and helps during my times at the University and beyond. I would also like to thank my wife, Miaoling Wang, my children, Anita, Sophia and Angela Lin, for their sacrifice and continuing supports to make this work possible. Financial supports from Australian Research Council, Australian Defense Science and Technology Organization and Strategic Marine Pty Ltd at Western Australia for this work is gratefully acknowledged.
Resumo:
1,2-Bis[10,15-di(3,5-di-tert-butyl)phenylporphyrinatonickel(II)-5-yl]diazene was synthesised via copper catalysed coupling of aminated nickel(II) 5,10-diarylporphyrin (“corner porphyrin”) and its X-ray crystal structure was determined. Two different crystals yielded different structures, one with the free meso positions in a trans-like orientation, and the other with a cis-like disposition. The free meso positions of the obtained dimer have been further functionalised while the synthesis of a zinc analogue has so far been unsuccessful. The X-ray crystal structure of the dinitro derivative of the dinickel(II) azoporphyrin was determined, and the structure showed a cis-like disposition of the nitro groups.
Resumo:
The coral reefs around the world may be likened to canaries down the mineshaft of global warming. These sensitive plant-like animals have evolved for life in tropical seas. Their needs are quite specific – not too cold, not too hot. A rise of as little as one degree Celsius is enough to cause some bleaching of these colourful jewels of the sea. Many climate models indicate we can expect sea temperature increases of between two and six degrees Celsius. Research - such as that detailed in a 2004 report by the University of Queensland’s Centre for Marine Studies – indicates that by the year 2050 most of the worlds major reef systems will be dead. Many of us have heard this kind of information, but it remains difficult to comprehend. It’s almost impossible to imagine the death of the Great Barrier Reef. Some six to nine thousand years old and visible from space, it is the world’s largest structure created by living organisms. Yet whilst it is hard to believe, this gentle, sensitive giant is at grave risk because it cannot adapt quickly enough to the changes in the environment. This cluster of fluffy felt brain coral sculptures are connected in real time to temperature data collected by monitoring stations within the Great Barrier Reef, that form part of the Australian Institute of Marine Science’s Great Barrier Reed Ocean Observing System. These corals display illumination patterns showing changes in sea temperature at Heron Reef, one of the 2,900 reefs that comprise the Great Barrier Reef. Their spectrum of colour ranges from cool hues, through warm tones to bright white when temperatures exceed those that tropical corals are able to tolerate over sustained periods. The Flower Animals also blush in colour and make sound when people come within close proximity. In a reef, fishes and other creatures generate significant amounts of sound. These cacophonies are considered an indicator of reef health, and are used by reef fish to determine where they can best live and forage.
Resumo:
Introduction Stretching of tissue stimulates angiogenesis but increased motion at a fracture site hinders revascularisation. In vitro studies have indicated that mechanical stimuli promote angiogenic responses in endothelial cells, but can either inhibit or enhance responses when applied directly to angiogenesis assays. We anticipated that cyclic tension applied during endothelial network assembly would increase vascular structure formation up to a certain threshold. Methods Fibroblast/HUVEC co-cultures were subjected to cyclic equibiaxial strain (1 Hz; 6 h/day; 7 days) using the FlexerCell FX-4000T system and limiting rings for simultaneous application of multiple strain magnitudes (0–13%). Cells were labelled using anti-PECAM-1, and image analysis provided measures of endothelial network length and numbers of junctions. Results Cyclic stretching had no significant effect on the total length of endothelial networks (P > 0.2) but resulted in a strain-dependent decrease in branching and localised alignments of endothelial structures, which were in turn aligned with the supporting fibroblastic construct. Conclusion The organisation of endothelial networks under cyclic strain is dominated by structural adaptation to the supporting construct. It may be that, in fracture healing, the formation and integrity of the granulation tissue and callus is ultimately critical in revascularisation and its failure under severe strain conditions.
Resumo:
The visual and multidimensional representations like images and graphical structures related to biology provide great insights into understanding the complexities of different organisms. Especially, life scientists use different representations of molecular structures to answer biological questions and to better understand cellular processes. Combining results from two field studies, we explore the role of molecular structures in life scientists’ current work from a humanfactors perspective. Our main conclusion is that different representations of molecular structures, due to their visual nature, are important for supporting collaboration, constructing new knowledge and supporting scientists’ professional activities in general.
Resumo:
Streaming services like Spotify and Pandora pay many millions of dollars each year for the rights to the music they play. But how much of this ends up back with artists and songwriters? The answer: not an awful lot.