686 resultados para Flensburg Fjord, Breitgrund


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Marine dissolved organic matter (DOM) represents one of the largest active carbon reservoirs on Earth. Changes in pool size or composition could have major impacts on the global carbon cycle. Ocean acidification is a potential driver for these changes because it influences marine primary production and heterotrophic respiration. Here we show that ocean acidification as expected for a 'business-as-usual' emission scenario in the year 2100 (900 µatm) does not affect the DOM pool with respect to its size and molecular composition. We applied ultrahigh-resolution mass spectrometry to monitor the production and turnover of 7,360 distinct molecular DOM features in an unprecedented long-term mesocosm study in a Swedish Fjord, covering a full cycle of marine production. DOM concentration and molecular composition did not differ significantly between present-day and year 2100 CO2 levels. Our findings are likely applicable to other coastal and productive marine ecosystems in general.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An unusual polyketide with a new carbon skeleton, lindgomycin (1), and the recently described ascosetin (2) were extracted from mycelia and culture broth of different Lindgomycetaceae strains, which were isolated from a sponge of the Kiel Fjord in the Baltic Sea (Germany) and from the Antarctic. Their structures were established by spectroscopic means. In the new polyketide, two distinct domains, a bicyclic hydrocarbon and a tetramic acid, are connected by a bridging carbonyl. The tetramic acid substructure of compound 1 was proved to possess a unique 5-benzylpyrrolidine-2,4-dione unit. The combination of 5-benzylpyrrolidine-2,4-dione of compound 1 in its tetramic acid half and 3-methylbut-3-enoic acid pendant in its decalin half allow the assignment of a new carbon skeleton. The new compound 1 and ascosetin showed antibiotic activities with IC50 value of 5.1 (±0.2) µM and 3.2 (±0.4) µM, respectively, against methicillin-resistant Staphylococcus aureus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Simultaneous triple stable isotope analysis of carbon, nitrogen and sulphur was employed to study the temporal variation in the food web of a subtidal eelgrass (Zostera marina) bed in the western Baltic Sea. Samples of three potential food sources: eelgrass, epiphytes and seston, as well as consumer species were collected biweekly from March through September 2011. Temporal variation of stable isotope signatures was observed in primary producers and consumer species. However, variation within a species, particularly omnivores, often exceeded variation over time. The high degree of omnivory among the generalist feeders in this eelgrass community allows for generalist feeders to flexibly switch food sources, thus enhancing food web stability. As coastal systems are subject to seasonal changes, as well as alterations related to human disturbance and climate, these food webs may retain a certain resilience due to their plentiful omnivores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetic diversity of baltic F. vesiculosus is low compared to other populations which might jeopardize their potential for adaptation to climate change. Especially the early life-stage F. vesiculosus may be threaten by ocean warming and acidification. To test this, we exposed F. vesiculosus germlings to warming and acidification in the near-natural scenario in the "Kiel Outdoor Benthocosms" maintaining the natural variation of the Kiel Fjord, Germany (54°27 'N, 10°11 'W) in all seasons (spring 2013 - 2014). Warming was simulated by using a delta treatment adding 5 °C and by increasing pCO2 at 1000 µatm. Warming positively affected germlings' growth in spring and in summer but decreased non-photochemical quenching in spring and survival in summer. Acidified conditions showed much weaker effects than warming. The high genotypic variation in stress sensitivity as well as the enhanced survival at high diversity levels indicate higher potential for adaptation for genetically diverse populations. We conclude that the combination of stressors and season determines the sensitivity to environmental stress and that genetic variation is crucial for the adaptation to climate change stress.