721 resultados para Fierz-Pauli
Resumo:
The amorphous phases of the Pd-Cu-P system has been obtained using the technique of rapidly quenching from the liquid state. Broad maxima in the diffraction pattern were obtained in the X-ray diffraction studies which are indicative of a glass-like structure. The composition range over which the amorphous solid phase is retained for the Pd-Cu-P system is (Pd100-xCux)80P20 with 10 ≤ x ≤ 50 and (Pd65Cu35)100-yPy with 15 ≤ y ≤ 24 and (Pd60Cu40)100-yPy with 15 ≤ y ≤ 24.
The electrical resistivity for the Pd-Cu-P alloys decreases with temperature as T2 at low temperatures and as T at high temperatures up to the crystallization temperature. The structural scattering model of the resistivity proposed by Sinha and the spin-fluctuation resistivity model proposed by Hasegawa are re-examined in the light of the similarity of this result to the Pt-Ni-P and Pd-Ni-P systems. Objections are raised to these interpretations of the resistivity results and an alternate model is proposed consistent with the new results on Pd-Cu-P and the observation of similar effects in crystalline transition metal alloys. The observed negative temperature coefficients of resistivity in these amorphous alloys are thus interpreted as being due to the modification of the density of states with temperature through the electron-phonon interaction. The weak Pauli paramagnetism of the Pd-Cu-P, Pt-Ni-P and Pd-Ni-P alloys is interpreted as being modifications of the transition d-states as a result of the formation of strong transition metal-metalloid bonds rather than a large transfer of electrons from the glass former atoms (P in this case) to the d-band of the transition metal in a rigid band picture.
Resumo:
Electronic structures and dynamics are the key to linking the material composition and structure to functionality and performance.
An essential issue in developing semiconductor devices for photovoltaics is to design materials with optimal band gaps and relative positioning of band levels. Approximate DFT methods have been justified to predict band gaps from KS/GKS eigenvalues, but the accuracy is decisively dependent on the choice of XC functionals. We show here for CuInSe2 and CuGaSe2, the parent compounds of the promising CIGS solar cells, conventional LDA and GGA obtain gaps of 0.0-0.01 and 0.02-0.24 eV (versus experimental values of 1.04 and 1.67 eV), while the historically first global hybrid functional, B3PW91, is surprisingly the best, with band gaps of 1.07 and 1.58 eV. Furthermore, we show that for 27 related binary and ternary semiconductors, B3PW91 predicts gaps with a MAD of only 0.09 eV, which is substantially better than all modern hybrid functionals, including B3LYP (MAD of 0.19 eV) and screened hybrid functional HSE06 (MAD of 0.18 eV).
The laboratory performance of CIGS solar cells (> 20% efficiency) makes them promising candidate photovoltaic devices. However, there remains little understanding of how defects at the CIGS/CdS interface affect the band offsets and interfacial energies, and hence the performance of manufactured devices. To determine these relationships, we use the B3PW91 hybrid functional of DFT with the AEP method that we validate to provide very accurate descriptions of both band gaps and band offsets. This confirms the weak dependence of band offsets on surface orientation observed experimentally. We predict that the CBO of perfect CuInSe2/CdS interface is large, 0.79 eV, which would dramatically degrade performance. Moreover we show that band gap widening induced by Ga adjusts only the VBO, and we find that Cd impurities do not significantly affect the CBO. Thus we show that Cu vacancies at the interface play the key role in enabling the tunability of CBO. We predict that Na further improves the CBO through electrostatically elevating the valence levels to decrease the CBO, explaining the observed essential role of Na for high performance. Moreover we find that K leads to a dramatic decrease in the CBO to 0.05 eV, much better than Na. We suggest that the efficiency of CIGS devices might be improved substantially by tuning the ratio of Na to K, with the improved phase stability of Na balancing phase instability from K. All these defects reduce interfacial stability slightly, but not significantly.
A number of exotic structures have been formed through high pressure chemistry, but applications have been hindered by difficulties in recovering the high pressure phase to ambient conditions (i.e., one atmosphere and room temperature). Here we use dispersion-corrected DFT (PBE-ulg flavor) to predict that above 60 GPa the most stable form of N2O (the laughing gas in its molecular form) is a 1D polymer with an all-nitrogen backbone analogous to cis-polyacetylene in which alternate N are bonded (ionic covalent) to O. The analogous trans-polymer is only 0.03-0.10 eV/molecular unit less stable. Upon relaxation to ambient conditions both polymers relax below 14 GPa to the same stable non-planar trans-polymer, accompanied by possible electronic structure transitions. The predicted phonon spectrum and dissociation kinetics validate the stability of this trans-poly-NNO at ambient conditions, which has potential applications as a new type of conducting polymer with all-nitrogen chains and as a high-energy oxidizer for rocket propulsion. This work illustrates in silico materials discovery particularly in the realm of extreme conditions.
Modeling non-adiabatic electron dynamics has been a long-standing challenge for computational chemistry and materials science, and the eFF method presents a cost-efficient alternative. However, due to the deficiency of FSG representation, eFF is limited to low-Z elements with electrons of predominant s-character. To overcome this, we introduce a formal set of ECP extensions that enable accurate description of p-block elements. The extensions consist of a model representing the core electrons with the nucleus as a single pseudo particle represented by FSG, interacting with valence electrons through ECPs. We demonstrate and validate the ECP extensions for complex bonding structures, geometries, and energetics of systems with p-block character (C, O, Al, Si) and apply them to study materials under extreme mechanical loading conditions.
Despite its success, the eFF framework has some limitations, originated from both the design of Pauli potentials and the FSG representation. To overcome these, we develop a new framework of two-level hierarchy that is a more rigorous and accurate successor to the eFF method. The fundamental level, GHA-QM, is based on a new set of Pauli potentials that renders exact QM level of accuracy for any FSG represented electron systems. To achieve this, we start with using exactly derived energy expressions for the same spin electron pair, and fitting a simple functional form, inspired by DFT, against open singlet electron pair curves (H2 systems). Symmetric and asymmetric scaling factors are then introduced at this level to recover the QM total energies of multiple electron pair systems from the sum of local interactions. To complement the imperfect FSG representation, the AMPERE extension is implemented, and aims at embedding the interactions associated with both the cusp condition and explicit nodal structures. The whole GHA-QM+AMPERE framework is tested on H element, and the preliminary results are promising.
Resumo:
Tunneling through two vertically coupled quantum dots is studied by means of a Pauli master equation model. The observation of double peaks in the current-voltage characteristic in a recent experiment is analyzed in terms of the tunnel coupling between the quantum dots and the coupling to the contacts. Different regimes for the emitter chemical potential indicating different peak scenarios in the tunneling current are discussed in detail. We show by comparison with a density matrix approach that the interplay of coherent and incoherent effects in the stationary current can be fully described by this approach.
Resumo:
Electron cyclotron resonance (CR) has been studied in magnetic fields up to 32 T in two heavily modulation-delta-doped GaAs/Al0.3Ga0.7As single quantum well samples. Little effect on electron CR is observed in either sample in the region of resonance with the GaAs LO phonons. However, above the LO-phonon frequency energy E-LO at B > 27 T, electron CR exhibits a strong avoided-level-crossing splitting for both samples at energies close to E-LO + (E-2 - E-1), where E-2, and E-1 are the energies of the bottoms of the second and the first subbands, respectively. The energy separation between the two branches is large, reaching a minimum of about 40 cm(-1) around 30.5 T for both samples. This splitting is due to a three-level resonance between the second LI, of the first electron subband and the lowest LL of the second subband plus an LO phonon. The large splitting in the presence: of high electron densities is due to the absence of occupation (Pauli-principle) effects in the final states and weak screening for this three-level process. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
Resumo:
A systematic study of electron cyclotron resonance (CR) in two sets of GaAs/Al0.3Ga0.7As modulation-doped quantum-well samples (well widths between 12 and 24 nm) has been carried out in magnetic fields up to 30 T. Polaron CR is the dominant transition in the region of GaAs optical phonons for the set of lightly doped samples, and the results are in good agreement with calculations that include the interaction with interface optical phonons. The results from the heavily doped set are markedly different. At low magnetic fields (below the GaAs reststrahlen region), all three samples exhibit almost identical CR which shows little effect of the polaron interaction due to screening and Pauli-principle effects. Above the GaAs LO-phonon region (B > similar to 23 T), the three samples behave very differently. For the most lightly doped sample (3 x 10(11) cm(-2)) only one transition minimum is observed, which can be explained as screened polaron CR. A sample of intermediate density (6 x 10(11) cm(-2)) shows two lines above 23 T; the higher frequency branch is indistinguishable from the positions of the single line of the low density sample. For the most heavily, doped sample (1.2 x 10(12) cm(-2)) there is no evidence of high frequency resonance, and the strong, single line observed is indistinguishable from the lower branch observed from sample with intermediate doping density. We suggest that the low frequency branch in our experiment is a magnetoplasmon resonance red-shifted by disorder, and the upper branch is single-particle-like screened polaron CR. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
本论文合成了R_1Ba_2Cu_3O_(2-x) (R = La、Nd、Sm、Eu、Gd、Dr、Ho、Er、Tm、Yb)、Y_2Ba_2Cu_3O_(2-x) (x = 0.10~1.17)和Y_1Ba_2Cu_3O_(7-x)S_x (x = 0~2),并对磁性和超导电性进行了较为系统的研究。R_1Ba_2Cu_3O_(2-x)的磁化率在T > Tc的很宽的温度范围内服从Curic-Weiss定律,求得的有效磁矩略大于理论值,差值与Y_1Ba_2Cu_3O_(2-x)中Cu~(2+)磁矩相近,说明Cu~(2+)的磁矩对体系磁性有额外贡献,这贡献随R~(3+)离子中自旋平行的电子权的增多而增大。其高温下的磁化率CT > 700K)相对Curic-Weiss定律发生较大偏离,这偏离可能的来源有三个:高温下稀土离子发生较大的能级反转效应,高温下结构相变对磁性的影响,高温下氧含量减少造成Cu~(2+)磁矩增大。R_1Ba_2Cu_3O_(2-x)磁化率在T < Tc时也服从Curic-Weiss定律,R~(3+)磁矩是定域的,表明超导与磁性相互独立。互不相关,稀土磁矩与传导电子间无相互作用。用Sr取代R_1Ba_2Cu_3O_(2-x)中的Ba,没能使体系产生磁有序的变化,但却使有效磁矩增大,并完全破坏了样品的超导电性。Sm~(3+)磁化率不服从Curic-Weiss定律,在Sm_1Ba_2Cu_3O_(2-x)中Sm~(3+)显示了典型Van VlccK离子的特性。Y_1Ba_2Cu_3O_(2-x)随氧含量减少发生超导体一半导体一绝缘体的转化,当氧含量由6.90减小至6.49时发生由正交到四方的结构相变。当(7-x) = 5.83时有较多杂质相出现,123相开始分解。样品磁化率均服从Curic-Weiss定律,并随氧含量增大磁化率-温度曲线越来越趋于平缓(直线),当(7-x) = 6.90时磁化率基本不随温度变化,这时Pauli顺磁性占主导地位,这说明氧含量增加定域磁矩减少,求得的有效磁矩Peff随氧含量增大总趋势减小。提出了电子“巡游”的观点,较好地解释了上述现象,并推测出Cu(2)的d电子是离域的,对样品磁矩没有贡献,样品Peff来源于部分Cu(1)的定域Cu~(2+)的磁矩,上述推测被EPR结果证实。正交相Y_1Ba_2Cu_3O_(2-x)的EPR谱显示了中心对称成准立方晶场中Cu~(2+)(d~9, S = 1/2, I = 3/2)的EPR物性。而四方相样品的EPR谱却出现了明显的各向异性,说明观察到的为Cu(1)的EPR信号,由Cu(1)~(2+)的写域磁矩产生。Y_1Ba_2Cu_3O_(2-x)的EPR信号束源于本体相,而非Y_2Cu_2O_5、BaCuO_2、Y_2BaCuO_5等杂质相。各样品EPR信号的自旋浓度远小于1spin/cu,并随氧含量减小而增大,当(7-x) = 6.49、6.40时自旋浓度出现陡增,这时伴随由正交到四方的转化,证明了电子“巡游”观点的正确。用硫部分取代Y_1Ba_2Cu_3O_2g中的氧,当Y_1Ba_2Cu_3O_(2-x)Sx中x = 0.11时Tc = 92.6K,比Y_1Ba_2Cu_3O_(7-x)升高2K,但由于杂质相的存在,ΔTc加宽。其他样品多为半导体和绝缘体。硫取代0,当x = 0.04,0.06,0.11和1.20时磁化率服从Curic-Weiss定律,并且x = 0.87,1.2时分别在230K、240K出现反铁磁有序。其他样品由于Cu被还原为+1价而变成抗磁性。x = 0.11 (Tc = 92.6K),EPR谱为正交场中Cu~(2+)的信号。自旋浓度与温度无关。当所有Cu均为Cu~(1+)时,测问的是-s-的EPR信号,而Cu为混合价态(+1和+2时)测问是上述两种信号的叠加。
Resumo:
A systematic study of electron cyclotron resonance (CR) in two sets of GaAs/Al0.3Ga0.7As modulation-doped quantum-well samples (well widths between 12 and 24 nm) has been carried out in magnetic fields up to 30 T. Polaron CR is the dominant transition in the region of GaAs optical phonons for the set of lightly doped samples, and the results are in good agreement with calculations that include the interaction with interface optical phonons. The results from the heavily doped set are markedly different. At low magnetic fields (below the GaAs reststrahlen region), all three samples exhibit almost identical CR which shows little effect of the polaron interaction due to screening and Pauli-principle effects. Above the GaAs LO-phonon region (B > similar to 23 T), the three samples behave very differently. For the most lightly doped sample (3 x 10(11) cm(-2)) only one transition minimum is observed, which can be explained as screened polaron CR. A sample of intermediate density (6 x 10(11) cm(-2)) shows two lines above 23 T; the higher frequency branch is indistinguishable from the positions of the single line of the low density sample. For the most heavily, doped sample (1.2 x 10(12) cm(-2)) there is no evidence of high frequency resonance, and the strong, single line observed is indistinguishable from the lower branch observed from sample with intermediate doping density. We suggest that the low frequency branch in our experiment is a magnetoplasmon resonance red-shifted by disorder, and the upper branch is single-particle-like screened polaron CR. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
We construct microscopic three-nucleon forces consistent with the Bonn and Nijmegen two-nucleon potentials, and including , Roper, and nucleon-antinucleon excitations. Recent results for the choice of the meson parameters are discussed. The forces are used in Brueckner calculations and the saturation properties of nuclear matter are determined.
Resumo:
Highly differential experimental results of the scattering system He++ on He at 30 keV are presented as well as a complete unified theoretical description where excitation, transfer and ionization are treated simultaneously on an ab initio level. The agreement even for highly differential cross sections is nearly complete although no explicit correlation besides Pauli correlation is included in the calculations.
Resumo:
We investigate the difference in the angular distribution of Ly-alpha(1) and K alpha(1) photons from hydrogenlike and heliumlike ions of uranium after radiative electron capture to the L shell. The strong anisotropy in the former case is changed to a very small one in the latter case. Our calculations support the observation. The effect takes place even in the limiting case of noninteracting electrons, being caused by the Pauli principle.
Resumo:
Equilibration and equilibration rates have been measured by colliding Sn nuclei with different isospin asymmetries at beam energies of E/A = 35 MeV. Using the yields of mirror nuclei of Li-7 and Be-7, we have studied the diffusion of isospin asymmetry by combining data from asymmetric Sn-112 + Sn-124 and Sn-124 + Sn-112 collisions with those from symmetric Sn-112 + Sn-112 and Sn-124 + Sn-124 collisions. We use these measurements to probe isospin equilibration in central collisions where nucleon-nucleon collisions are strongly blocked by the Pauli exclusion principle. The results are consistent with transport theoretical calculations that predict a degree of transparency in these collisions, but inconsistent with the emission of intermediate mass fragments by a single chemically equilibrated source. Comparisons with quantum molecular dynamics calculations are consistent with results obtained at higher incident energies that provide constraints on the density dependence of the symmetry energy.
Resumo:
在过去的几年里,利用兰州重离子加速器(HIRFL)提供的束流,以及在OUVERTURE合作研究中,利用意大利国家核物理研究院南方实验室(INFN-LNS)超导回旋提供的束流,进行了多次中能区重离子核反应实验研究工作。如,最初的46.7MeV/u ~(12)C+~(58)Ni,~(115)In,~(197)Au的实验及30MeV/u ~(40)Ar+~(58)Ni,~(64)Ni~(115)In和30MeV/u Ni轰击Ni,Au,Al在MULTICS+MEDEA:4π装置上进行的实验工作。此外,本人还从事过一些理论研究工作,包括多粒子散射形式理论和相关数学物理问题研究,量子分子动力学和量子统计模型计算。本文是从事这些核物理研究工作的积累,主要侧重于实验结果的物理内容分析,而不强调实验技术,数据处理的技巧。主要的物理内容有以下几个方面:1.对于利用双同位素产额比提取同位素核温度的方法进行研究推广,使得对于实验中碰到的仅有部分能谱可以实现很好同位素分辩的情况,即使不能得到总的同位素产额,仅仅通过一段能区的同位素产额也可提取核温度。用于具体的实验研究工作中后,对于46.7MeV/u ~(12)C+~(58)Ni,~(115)In,~(197)Au核反应过程,同一体系利用这种方法得到的同位素核温度和利用粒子非稳态布居提取的核温度一致。2.围绕核反应过程中核温度的参量的提取,对于双同位素产额比与核温度的刻度关系进行了分析研究,通过计算考虑中等质量碎片(IMF)内部激发能后的内部配分函数表明,中等质量碎片的内部激发对刻度关系有重要影响。零阶近似下区域密度近似的结果和Gemini模拟计算的结果反映了相同的情况。3.研究核反应机制,多个粒子散射的形式理论的必需的,对于两体散射,其形式理论已经比较成熟,但是对于多个粒子散射问题出现的严重的困难是多体Lippmann-Schwinger方程无唯一收敛的解。作为一种探索性的研究工作,开展了多体散射理论研究工作,发展了一些具有普遍意义的数学物理方法。在本项研究工作中,通过能基础数学中的约当引理的推广,发现一个特例:对非连接图,Lippmann-Schwingwer方程存在收敛的解,因此多体散射形式理论,有可能重新建立。由于核力和多体问题是当今核物理研究的两大难点,世界各国的科学家都在努力以图攻克它们,而且多体问题还是物理学的其它许多领域的难题,因而多体散射还是引起诸多研究学科广泛兴趣的课题。通过发展一些新的数学理论和方法,我们已得到一些有意义的结果。4.将量子分子动力学这种中高能量区域所用的理论分析方法扩展至较低能区,通过对相空间中初始位置和动量抽样增加限制条件。如结合能和实验值要求一致,平均核势,核内Pauli阻塞更强一些,在演化中能量和动量守恒等等。得到一个很稳定的初始基态。均方半径保持不弥散的时间可达1600fm/c,用于研究10.6MeV/u Ne~(20)+Al~(27)的实验分析过程中。另外,量子统计模型(QSM)主要描述中心核-核碰撞,将它和碎裂模型结合,作一些改进后,可以对核-核碰撞进行统一描述。5.在中能核反应研究中发现,核反应过程中有大量的中子,轻带电粒子以及中等质量碎片发射出来,可以将这些粒子发射机制大致分为两大类。其中一类可以归结为动力学发射过程的产物。另一类则可以归于统计发射的产物。在低能核反应中,其发射能谱的斜率的负倒数,可作为复合核的核温度。而在中能重离子核反应中,其发射能谱变得很复杂,不再具有Maxwell分布。通常的三源拟合所给出的温度参数,已不能反映物理实质。提出多阶矩分析方法用于分析中能核反应中统计发射规律及受动力学过程的影响。
Resumo:
论文系统地介绍和分析了当前几类描述重离子碰撞动力学过程输运理论的优点和缺点,并针对这些理论的不足作为建立我们理论模型的出发点。例如BUU(Boltzmann-Uehling-Uhlenbeck)系列的输运过程,可以通过不同方法从量子多体理论依照扩展的时间相关的Hartree-Fock(ETDHF)的基本思想推导出来,并对重离子碰撞过程中有关平均场物理量给出了合理的描述。但由于推导中采用了一些半经典近似和参数化近似,破坏了平均场合碰撞项之间的动力学自洽耦合。特别是数值计算中采用了实验粒子系综平均法,从而丢失了多体关联和涨落,使其无法直接描述重离子碰撞中基本的碎块形成和多重碎裂过程。而量子分子动力学(QMD)系列的理论能够给出重离子碰撞过程中碎块形成的动力学描述,但至今无法从量子多体理论推导出有关QMD的输运方程。碰撞项是在数值计算中通过Monte Carlo抽样技术人为地加入的。那么,如何从量子多体理论出发推导出描述重离子碰撞动力学过程的,可将时间相关的平均场,多体关联进行自洽耦合描述的量子输运理论就成了本论文工作的中心目的。 基于王顺金等人建立的多体关联动力学理论,选用时间相关的相干态单粒子基矢作为新理论的工作表象,对两体关联动力学中的一体密度矩阵和两体关联函数进行轨道展开,推导出了描述非相对论重离子碰撞动力学过程的两体关联输运理论TBCTT(Two-Body Correlation Transport Theory)。TBCTT是一组包括时间相关的平均场,两体关联和Pauli原理的自洽耦合的动力学方程组。其中时间相关的相干单粒子基矢是该理论的一个关键问题。其时间演化的动力学可由多种不同的方法得到,如时间相关的Hartree-Fock方法,时间相关的变分方法等。但作为建立TBCTT工作的第一步,为了计算简便,我们采用经典的Hamilton方程来描述相干单粒子基矢中相空间参数的时间演化,然后通过与两体关联动力学的耦合而恢复TBCCT基本的量子特征。 利用TBCTT对几组轻的碰撞系统进行了数值计算和分析。计算结果表明:TBCTT可以给出重离子碰撞过程中的有关物理量时间演化过程的合理描述,得到了在不同入射道条件下与QMD模型的可比性结果。同时也在组态空间的有限截断和两体关联函数不同的等级截断下均得到了碰撞系统总动量,总能量和总粒子数的近似守恒结果,特别是能量守恒,这是一般半经典输运理论中一个重要的困难问题。另外还得到了两体关联函数不同的等级截断近似对碰撞动力学方面不同的描述。所用这些数值计算结果充分表明:TBCTT是一个有希望和有发展前途的能够描述重离子碰撞动力学的量子输运理论。最后我们对当前计算中所采用的近似和存在的问题进行了分析和讨论,提出了进一步改进和完善TBCTT的途径和方案。 我们在开始TBCTT的研究之前还对QMD进行了仔细的研究和改进。通过在平均场中引入Pauli势和对称势并利用摩擦冷却方法构造原子核基态,得到了一种改进的量子分子动力学MQMD。利用这种MQMD研究了12C+12C反应多重碎裂过程中的核结构效应,得到了与AMD和实验数据基本一致的结果。对QMD的改进和应用为开展TBCTT的研究工作创造了必要条件和准备。
Resumo:
The article presents an interpretation of the Soli Deo honor et gloria inscription from the fronton of the metropolitan cathedral of Christ the King in Katowice. The interpretation of the text depends on whether the word soli is taken as solely attributive or also as predicative. Given both the ancient and the contemporary historical and cultural contexts the former appears more plausible.
Resumo:
In this thesis we relate the formal description of various cold atomic systems in the energy eigenbasis, to the observable spatial mode dynamics. Herein the `spatial mode dynamics' refers to the direction of photon emission following the spontaneous emission of an excited fermion in the presence of a same species and spin ideal anisotropic Fermi sea in its internal ground state. Due to the Pauli principle, the presence of the ground state Fermi sea renders the phase space, anisotropic and only partially accessible, thereby a ecting the direction of photon emission following spontaneous emission. The spatial and energetic mode dynamics also refers to the quantum `tunneling' interaction between localised spatial modes, synonymous with double well type potentials. Here we relate the dynamics of the wavefunction in both the energetic and spatial representations. Using this approach we approximate the relationship between the spatial and energetic representations of a wavefunction spanning three spatial and energetic modes. This is extended to a process known as Spatial Adiabatic Passage, which is a technique to transport matter waves between localised spatial modes. This approach allows us to interpret the transport of matter waves as a signature of a geometric phase acquired by the one of the internal energy eigenstates of the system during the cyclical evolution. We further show that this geometric phase may be used to create spatial mode qubit and qutrit states.