930 resultados para Ferromagnetic resonance


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: A prior image based temporally constrained reconstruction ( PITCR) algorithm was developed for obtaining accurate temperature maps having better volume coverage, and spatial, and temporal resolution than other algorithms for highly undersampled data in magnetic resonance (MR) thermometry. Methods: The proposed PITCR approach is an algorithm that gives weight to the prior image and performs accurate reconstruction in a dynamic imaging environment. The PITCR method is compared with the temporally constrained reconstruction (TCR) algorithm using pork muscle data. Results: The PITCR method provides superior performance compared to the TCR approach with highly undersampled data. The proposed approach is computationally expensive compared to the TCR approach, but this could be overcome by the advantage of reconstructing with fewer measurements. In the case of reconstruction of temperature maps from 16% of fully sampled data, the PITCR approach was 1.57x slower compared to the TCR approach, while the root mean square error using PITCR is 0.784 compared to 2.815 with the TCR scheme. Conclusions: The PITCR approach is able to perform more accurate reconstructions of temperature maps compared to the TCR approach with highly undersampled data in MR guided high intensity focused ultrasound. (C) 2015 American Association of Physicists in Medicine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A water soluble third generation poly(alkyl aryl ether) dendrimer was examined for its ability to solubilize hydrophobic polyaromatic molecules in water and facilitate non-radiative resonance energy transfer between them. One to two orders of magnitude higher aqueous solubilities of pyrene (PY), perylene (PE), acridine yellow (AY) and acridine orange (AO) were observed in presence of a defined concentration of the dendrimer. A reduction in the quantum yield of the donor PY* emission and a partial decrease in lifetime of the donor excited state revealed the occurrence of energy transfer from dendrimer solubilized excited PY to ground state PE molecules, both present within a dendrimer. The energy transfer efficiency was estimated to be similar to 61%. A cascade resonance energy transfer in a three component system, PY*-to-PE-to-AY and PY*-to-PE-to-AO, was demonstrated through incorporation of AY or AO in the two component PY-PE system. In the three-component system, excitation of PY resulted in emission from AY or AO via a cascade energy transfer process. Careful choice of dye molecules with good spectral overlap and the employment of dendrimer as the medium enabled us to expand absorption-emission wavelengths, from similar to 330 nm to similar to 600 nm in aqueous solution. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the remarkable phase separation behavior in La0.67Sr0.33MnO3 doped with Bi3+ ion at La site. The temperature dependent resistivity and magnetization of La0.67-xBixSr0.33MnO3 (x>0) show the presence of phase separation of ferromagnetic metallic and charge ordered antiferromagnetic insulating phases. Markedly, the field dependant magnetization studies of La0.67-xBixSr0.33MnO3 (x=0.3) show the metamagnetic nature of ferromagnetic metallic state implying the competition of coexisting ferromagnetic metallic and charge ordered antiferromagnetic phases. The electron spin resonance and exchange bias studies of La0.67-xBixSr0.33MnO3 (x=0.4 and 0.5) substantiate the coexistence of ferromagnetic clusters in antiferromagnetic matrix. (C) 2016 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the case of metallic ferromagnets there has always been a controversy, i.e. whether the magnetic interaction is itinerant or localized. For example SrRuO3 is known to be an itinerant ferromagnet where the spin-spin interaction is expected to be mean field in nature. However, it is reported to behave like Ising, Heisenberg or mean field by different groups. Despite several theoretical and experimental studies and the importance of strongly correlated systems, the experimental conclusion regarding the type of spin-spin interaction in SrRuO3 is lacking. To resolve this issue, we have investigated the critical behaviour in the vicinity of the paramagnetic-ferromagnetic phase transition using various techniques on polycrystalline as well as (001) oriented SrRuO3 films. Our analysis reveals that the application of a scaling law in the field-cooled magnetization data extracts the value of the critical exponent only when it is measured at H -> 0. To substantiate the actual nature without any ambiguity, the critical behavior is studied across the phase transition using the modified Arrott plot, Kouvel-Fisher plot and M-H isotherms. The critical analysis yields self-consistent beta, gamma and delta values and the spin interaction follows the long-range mean field model. Further the directional dependence of the critical exponent is studied in thin films and it reveals the isotropic nature. It is elucidated that the different experimental protocols followed by different groups are the reason for the ambiguity in determining the critical exponents in SrRuO3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the case of metallic ferromagnets there has always been a controversy, i.e. whether the magnetic interaction is itinerant or localized. For example SrRuO3 is known to be an itinerant ferromagnet where the spin-spin interaction is expected to be mean field in nature. However, it is reported to behave like Ising, Heisenberg or mean field by different groups. Despite several theoretical and experimental studies and the importance of strongly correlated systems, the experimental conclusion regarding the type of spin-spin interaction in SrRuO3 is lacking. To resolve this issue, we have investigated the critical behaviour in the vicinity of the paramagnetic-ferromagnetic phase transition using various techniques on polycrystalline as well as (001) oriented SrRuO3 films. Our analysis reveals that the application of a scaling law in the field-cooled magnetization data extracts the value of the critical exponent only when it is measured at H -> 0. To substantiate the actual nature without any ambiguity, the critical behavior is studied across the phase transition using the modified Arrott plot, Kouvel-Fisher plot and M-H isotherms. The critical analysis yields self-consistent beta, gamma and delta values and the spin interaction follows the long-range mean field model. Further the directional dependence of the critical exponent is studied in thin films and it reveals the isotropic nature. It is elucidated that the different experimental protocols followed by different groups are the reason for the ambiguity in determining the critical exponents in SrRuO3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene oxide-CoFe2O4 nanoparticle composites were synthesized using a two step synthesis method in which graphene oxide was initially synthesized followed by precipitation of CoFe2O4 nanoparticles in a reaction mixture containing graphene oxide. Samples were extracted from the reaction mixture at different times at 80 degrees C. All the extracted samples contained CoFe2O4 nanoparticles formed over the graphene oxide. It was observed that the increase in the reflux time significantly increased the saturation magnetization value for the superparamagnetic nanoparticles in the composite. It was also noticed that the size of the nanoparticles increased with increase in the reflux time. Transverse relaxivity of the water protons increased monotonically with increase in the reflux time. Whereas, the longitudinal relaxivity value initially increased and then decreased with the reflux time. Graphene oxide-CoFe2O4 nanoparticle composites also exhibit biocompatibility towards the MCF-7 cell line.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study an s-channel resonance R as a viable candidate to fit the diboson excess reported by ATLAS. We compute the contribution of the similar to 2 TeV resonance R to semileptonic and leptonic final states at the 13 TeV LHC. To explain the absence of an excess in the semileptonic channel, we explore the possibility where the particle R decays to additional light scalars X, X or X, Y. A modified analysis strategy has been proposed to study the three-particle final state of the resonance decay and to identify decay channels of X. Associated production of R with gauge bosons has been studied in detail to identify the production mechanism of R. We construct comprehensive categories for vector and scalar beyond-standard-model particles which may play the role of particles R, X, Y and find alternate channels to fix the new couplings and search for these particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MnSb films were deposited on porous silicon substrates by physical vapor deposition (PVD) technique. Modulation effects due to the substrate on microstructure and magnetic properties of the MnSb film's were studied by scanning electron microscope (SEM), X-ray diffraction (XRD) and measurements of hysteresis loops. SEM images of the MnSb films indicate that net-like structures were obtained because of the special morphology of the substrates. The net-like MnSb films exhibit some novel magnetic properties different from the unpatterned referenced samples. For example, in the case of net-like morphology, the coercive field is as low as 60 Oe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a refined two-dimensional hybrid-model with self-consistent microwave absorption, we have investigated the change of plasma parameters such as plasma density and ionization rate with the operating conditions. The dependence of the ion current density and ion energy and angle distribution function at the substrate surface vs. the radial position, pressure and microwave power were discussed. Results of our simulation can be compared qualitatively with many experimental measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ferromagnetic semiconductor MnxGa1-xSb single crystals were fabricated by Mn-ions implantation, deposition, and the post annealing. Magnetic hysteresis-loops in the MnxGa1-xSb single crystals were obtained at room temperature (300 K). The structure of the ferromagnetic semiconductor MnxGa1-xSb single crystal was analyzed by Xray diffraction. The distribution of carrier concentrations in MnxGa1-xSb was investigated by electrochemical capacitance- voltage profiler. The content of Mn in MnxGa1-xSb varied gradually from x = 0.09 near the surface to x = 0 in the wafer inner analyzed by X-ray diffraction. Electrochemical capacitance-voltage profiler reveals that the concentration of p-type carriers in MnxGa1-xSb is as high as 1 1021 cm-3, indicating that most of the Mn atoms in MnxGa1-xSb take the site of Ga, and play a role of acceptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deposition of hydrogenated amorphous silicon carbide (a-SiC:H) films from a mixture of silane, acetylene and hydrogen gas using the electron cyclotron resonance chemical vapour deposition (ECR-CVD) process is reported. The variation in the deposition and film characteristics such as the deposition rate, optical band gap and IR absorption as a function of the hydrogen dilution is investigated. The deposition rate increases to a maximum value of about 250 Å min-1 at a hydrogen dilution ratio of about 20 (hydrogen flow (sccm)/acetylene + silane flow (sccm)) and decreases in response to a further increase in the hydrogen dilution. There is no strong dependence of the optical band gap on the hydrogen dilution within the dilution range investigated (10-60) and the optical band gap calculated from the E04 method varied marginally from about 2.85 to 3.17 eV. The room temperature photoluminescence (PL) peak energy and intensity showed a prominent shift to a maximum value of about 2.17 eV corresponding to maximum PL intensity at a moderate hydrogen dilution of about 30. The PL intensity showed a strong dependence on the hydrogen dilution variation.