807 resultados para Falciparum
Resumo:
Parasite resistance to antimalarial drugs is a serious threat to human health, and novel agents that act on enzymes essential for parasite metabolism, such as proteases, are attractive targets for drug development. Recent studies have shown that clinically utilized human immunodeficiency virus (HIV) protease inhibitors can inhibit the in vitro growth of Plasmodium falciparum at or below concentrations found in human plasma after oral drug administration. The most potent in vitro antimalarial effects have been obtained for parasites treated with saquinavir, ritonavir, or lopinavir, findings confirmed in this study for a genetically distinct P. falciparum line (3D7). To investigate the potential in vivo activity of antiretroviral protease inhibitors (ARPIs) against malaria, we examined the effect of ARPI combinations in a murine model of malaria. In mice infected with Plasmodium chabaudi AS and treated orally with ritonavir-saquinavir or ritonavir-lopinavir, a delay in patency and a significant attenuation of parasitemia were observed. Using modeling and ligand docking studies we examined putative ligand binding sites of ARPIs in aspartyl proteases of P. falciparum (plasmepsins II and IV) and P. chabaudi (plasmepsin) and found that these in silico analyses support the antimalarial activity hypothesized to be mediated through inhibition of these enzymes. In addition, in vitro enzyme assays demonstrated that P. falciparum plasmepsins II and IV are both inhibited by the ARPIs saquinavir, ritonavir, and lopinavir. The combined results suggest that ARPIs have useful antimalarial activity that may be especially relevant in geographical regions where HIV and P. falciparum infections are both endemic.
Resumo:
The malarial parasite Plasmodium falciparum depends on the purine salvage enzyme hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) to convert purine bases from the host to nucleotides needed for DNA and RNA synthesis. An approach to developing antimalarial drugs is to use HGXPRT to convert introduced purine base analogs to nucleotides that are toxic to the parasite. This strategy requires that these compounds be good substrates for the parasite enzyme but poor substrates for the human counterpart, HGPRT. Bases with a chlorine atom in the 6-position or a nitrogen in the 8-position exhibited strong discrimination between P. falciparum HGXPRT and human HGPRT. The k(cat)/K-m values for the Plasmodium enzyme using 6-chloroguanine and 8-azaguanine as substrates were 50-80-fold and 336-fold higher than for the human enzyme, respectively. These and other bases were effective in inhibiting the growth of the parasite in vitro, giving IC50 values as low as 1 mu M.
Resumo:
The growing problem of drug resistance has greatly complicated the treatment for falciparum malaria. Whereaschloroquine and sulfadoxine/ pyrimethamine could once cure most infections, this is no longer true and requiresexamination of alternative regimens. Not all treatment failures are drug resistant and other issues such asexpired antimalarials and patient compliance need to be considered. Continuation of a failing treatment policyafter drug resistance is established suppresses infections rather than curing them, leading to increasedtransmission of malaria, promotion of epidemics and loss of public confidence in malaria control programs.Antifolate drug resistance (i.e. pyrimethamine) means that new combinations are urgently needed particularlybecause addition of a single drug to an already failing regimen is rarely effective for very long. Atovaquone/proguanil and mefloquine have been used against multiple drug resistant falciparum malaria with resistance toeach having been documented soon after drug introduction. Drug combinations delay further transmission ofresistant parasites by increasing cure rates and inhibiting formation of gametocytes. Most currentlyrecommended drug combinations for falciparum malaria are variants of artemisinin combination therapy wherea rapidly acting artemisinin compound is combined with a longer half-life drug of a different class. Artemisininsused include dihydroartemisinin, artesunate, artemether and companion drugs include mefloquine, amodiaquine,sulfadoxine/ pyrimethamine, lumefantrine, piperaquine, pyronaridine, chlorproguanil/dapsone. The standard ofcare must be to cure malaria by killing the last parasite. Combination antimalarial treatment is vital not only tothe successful treatment of individual patients but also for public health control of malaria.
Resumo:
Malaria aminopeptidases are important in the generation and regulation of free amino acids that are used in protein anabolism and for maintaining osmotic stability within the infected erythrocyte. The intraerythrocytic development of malaria parasites is blocked when the activity of aminopeptidases is specifically inhibited by reagents such as bestatin. One of the major aminopeptidases of malaria parasites is a leucyl aminopeptidase of the M17 family. We reasoned that, when this enzyme was the target of bestatin inhibition, its overexpression in malaria cells would lead to a reduced sensitivity to the inhibitor. To address this supposition, transgenic Plasmodium falciparum parasites overexpressing the leucyl aminopeptidase were generated by transfection with a plasmid that housed the full-length gene. Transgenic parasites expressed a 65-kDa protein close to the predicted molecule size of 67.831 kDa for the introduced leucyl aminopeptidase, and immunofluorescence studies localized the protein to the cytosol, the location of the native enzyme. The product of the transgene was shown to be functionally active with cytosolic extracts of transgenic parasites exhibiting twice the leucyl aminopeptidase activity compared with wildtype parasites. In vitro inhibitor sensitivity assays demonstrated that the transgenic parasites were more resistant to bestatin (EC50 64 mu M) compared with the parent parasites (EC50 25 mu M). Overexpression of genes in malaria parasites would have general application in the identification and validation of targets for antimalarial drugs.
Resumo:
Human malaria is responsible for over 700,000 deaths a year. To stay abreast of the threat posed by the parasite, a constant stream of new drugs and vector control methods are required. This study focuses on a vaccine that has the potential to protect against parasite infection, but has been hindered by developmental challenges. In malaria prevention, live, attenuated, aseptic, Plasmodium falciparum sporozoites (PfSPZ) can be administered as a highly protective vaccine. PfSPZ are produced using adult female Anopheles stephensi mosquitoes as bioreactors. Production volume and cost of a PfSPZ vaccine for malaria are expected to be directly correlated with Plasmodium falciparum infection intensity in the salivary glands. The sporogonic development of Plasmodium falciparum in A. stephensi to fully infected salivary gland stage sporozoites is dictated by the activities of several known components of the mosquito’s innate immune system. Here I report on the use of genetic technologies that have been rarely, if ever, used in Anopheles stephensi Sda500 to increase the yield of sporozoites per mosquito and enhance vaccine production. By combining the Gal4/UAS bipartite system with in vivo expression of shRNA gene silencing, activity of the IMD signaling pathway downstream effector LRIM1, an antagonist to Plasmodium development, was reduced in the midgut, fat body, and salivary glands of A. stephensi. In infection studies using P. berghei and P. falciparum these transgenic mosquitoes consistently produced significantly more salivary gland stage sporozoites than wildtype controls, with increases in P. falciparum ranging from 2.5 to 10 fold. Using Plasmodium infection assays and qRT-PCR, two novel findings were identified. First, it was shown that 14 days post Plasmodium infection, transcript abundance of the IMD immune effector genes LRIM1, TEP1 and APL1c are elevated, in the salivary glands of A. stephensi, suggesting the salivary glands may play a role in post midgut defense against the parasite. Second, a non-pathogenic IMD signaling pathway response was observed which could suggest an alternative pathway for IMD activation. The information gained from these studies has significantly increased our knowledge of Plasmodium defense in A. stephensi and moreover could significantly improve vaccine production.
Resumo:
Objectives: Infectious agents triggering haemophagocytic lymphohistiocytosis (HLH) primarily involve the herpes virus group. We report a case of HLH precipitated by Plasmodium falciparum. Materials and methods: Clinical and laboratory findings in a patient presenting with fever were collected. After confirmation of acute malaria, anti-malarial treatment was administered. Results: Despite initial favourable evolution, the patient developed fever again together with a worsening of the haematological parameters and increased ferritin levels. A bone marrow biopsy confirmed the diagnosis of HLH. Conclusion: This case illustrates that HLH should be considered in the differential diagnosis of acute malaria in patients with persisting fever and pancytopenia.
Resumo:
Background: Plasmodium falciparum, the most dangerous malaria parasite species to humans remains an important public health concern in Okelele, a rural community in Ilorin, Kwara State, Nigeria. There is however little information about the genetic diversity of Plasmodium falciparum in Nigeria. Objective: To determine the population genomic diversity of Plasmodium falciparum in malaria patients attending Okelele Community Healthcare Centre, Okelele, Ilorin, Kwara State. Methods: In this study, 50 Plasmodium falciparum strains Merozoite Surface Protein 1, Merozoite Surface Protein 2 and Glutamate Rich Protein were analysed from Okelele Health Centre, Okelele, Ilorin, Nigeria. Genetic diversity of P. falciparum isolates were analysed from nested polymerase chain reactions (PCR) of the MSP-1 (K1, MAD 20 and RO33), MSP-2 (FC27 and 3D7) and Glutamate Rich Protein allelic families respectively. Results: Polyclonal infections were more in majority of the patients for MSP-1 allelic families while monoclonal infections were more for MSP-2 allelic families. Multiplicity of infection for MSP-1, MSP-2 and GLURP were 1.7, 1.8 and 2.05 respectively Conclusion: There is high genetic diversity in MSP – 2 and GLURP allelic families of Plasmodium falciparum isolates from Okelele Health Centre, Ilorin, Nigeria.
Resumo:
The ABO and Rhesus blood group systems are very important clinical tools that are commonly used in blood transfusion and their associations with various disease conditions have been widely reported. This study investigated the distribution of these blood group systems and assessed the association of malaria infection with the ABO blood groups among children in Federal Capital Territory, Abuja. Blood specimens from deep finger pricks of 730 children aged between 0-2 years were examined for malaria parasites using Field stains method. ABO and Rhesus blood group antigens tests were also performed using standard tile protocols. Of all the children admitted into the study, 445 were sick while 285 were apparently healthy. The prevalence of malaria parasites was significantly higher (P = 0.00047) among the sick children (69.8%) than the apparently healthy children (30.2%). The most prevalent blood group was O (55.7%) and the Rhesus D antigen was positive for 98.4% of all the children. The prevalence of blood group B among the sick children was significantly lower (P = 0.00373) than the other blood group types. There is no association between malaria infection and ABO blood groups but the prevalence of higher malaria parasite density was significantly greater (P = 0.0404) in children with blood group A (7.7%). In conclusion, blood group O was the most prevalent blood group in the study and children with blood group A appeared to be more susceptible to higher level of malaria parasitemia.
Resumo:
Malaria is a pathology caused by a parasite called Plasmodium, characteristic of tropical countries. The most frequent symptomatology includes cerebral malaria, jaundice, convulsive crisis, anemia, hypoglycemia, kidney failure and metabolic acidosis, among others. We are presenting the case of a patient diagnosed with malaria who suffered from acute hemorrhagic necrotizing pancreatitis and evolved poorly, as an example of this combination of symptoms, rarely found in our country.
Resumo:
This work reports the in vitro activity against Plasmodium falciparum blood forms (W2 clone, chloroquine-resistant) of tamoxifen-based compounds and their ferrocenyl (ferrocifens) and ruthenocenyl (ruthenocifens) derivatives, as well as their cytotoxicity against HepG2 human hepatoma cells. Surprisingly with these series, results indicate that the biological activity of ruthenocifens is better than that of ferrocifens and other tamoxifen-like compounds. The synthesis of a new metal-based compound is also described. It was shown, for the first time, that ruthenocifens are good antiplasmodial prototypes. Further studies will be conducted aiming at a better understanding of their mechanism of action and at obtaining new compounds with better therapeutic profile.
Resumo:
Tese de Doutoramento, Química, Especialização em Química Orgânica, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2016
Resumo:
La malaria est une maladie infectieuse causant plus de 500 000 morts chaque année. La maladie est causée par un protozoaire de la famille Plasmodium. L’apparition de souches résistantes aux traitements actuels et l’absence de vaccin efficace rendent la découverte de nouvelles cibles thérapeutiques urgente. Le parasite possède un complexe apical, un groupement de vacuoles sécrétoires spécialisées contenant les protéines responsables de l’invasion du globule rouge. Nous nous intéressons aux mécanismes gouvernant le transport intracellulaire de ces protéines et à la biogenèse du complexe apical lors de la formation des nouveaux parasites. Plus particulièrement, nous nous intéressons au rôle des phosphoinositides dans le recrutement des protéines à la membrane de l’appareil de Golgi. Par analyse bio-informatique du génome de P. falciparum, nous avons identifié plusieurs protéines effectrices liant potentiellement les phosphoinositides. Les travaux présentés dans ce mémoire concernent Mal13P1.188, une protéine possédant un domaine Pleckstrin homology. Nous proposons que Mal13P1.188 ait un rôle dans la génération du complexe apical en recrutant les protéines le constituant à la membrane du Golgi par la liaison avec les phosphoinositides. Afin de vérifier nos hypothèses, nous avons généré une lignée de parasite dont le gène de Mal13P1.188 est fusionné avec une GFP et une hémagglutinine. À l’aide de cette lignée de parasite, nous avons pu identifier Mal13P1.188 à proximité de l’appareil de Golgi lorsque les parasites étaient sous la forme schizont du cycle érythrocytaire. D’autres expériences ont permis de confirmer que le domaine Pleckstrin homology de Mal13P1.188 était capable de reconnaître les différentes formes de phosphoinositides. Finalement, d’autres travaux devront être faits sur Mal13P1.188 afin de déterminer si elle est essentielle à la survie du parasite.
Resumo:
SPECT-1 y -2 y SIAP-1 y -2 son proteínas pertenecientes al esporozoíto de Plasmodium falciparum causante de la malaria más agresiva en los humanos. Estas proteínas están involucradas en el paso del parásito a través de las células del hospedero humano y en la invasión del hepatocito, haciéndolas blancos atractivos para ser estudiadas. Péptidos conservados de alta capacidad de unión (cHABPs) a células HeLa y HepG2 derivados de estas moléculas son no inmunogénicos porque son incapaces de generar una respuesta inmunitaria, pero son claves para el parásito porque cumplen una función importante durante la infección del hospedero humano. En este trabajo se encontró que algunos cHABPs pertenecientes a las proteínas SPECT-1 y -2, están posiblemente involucrados con la unión y formación de poros sobre la membrana de las células hospederas, ayudando al esporozoíto a abrirse paso través de las células del hospedero. Por otro lado, con el fin de cambiar el comportamiento inmunológico de cHABPs derivados de SPECT-1 y -2 y SIAP-1 y -2, se obtuvieron nuevos péptidos mediante el reemplazo de aminoácidos críticos por otros residuos cuya masa molecular sea similar, pero diferente en su polaridad. En este trabajo se reporta que dichas modificaciones promovieron cambios en la estructura secundaria (determinada por DC o 1H-RMN) de los péptidos modificados (mHABPs) cuando se comparó con la estructura de los cHABPs nativos; adicionalmente, estos mHABPs invirtieron su comportamiento inmunológico convirtiéndose en péptidos inmunogénicos inductores de anticuerpos. Lo que permite establecer la existencia de una relación entre la estructura que adoptan estos mHABPs con su actividad inmunológica. Además, algunos de los mHABPs estudiados aquí, pueden ser candidatos a ser incluidos en la vacuna contra la malaria químicamente sintetizada multi-epitope y multi-estadio que se está desarrollando en la Fundación Instituto de Inmunología de Colombia (FIDIC).
Resumo:
El desarrollo de una vacuna contra malaria es un área de exploración activa pero con enormes retos debido especialmente a la complejidad del ciclo del parásito. Así, es necesario bloquear las diferentes etapas de la invasión que tiene el Plasmodium falciparum y extraer de ellas la mayor información posible de la artillería que utiliza para su ataque. Para esto, péptidos de las proteínas STARP, CelTOS y TRSP (del esporozoito) y SERA 5 (del merozoito) que tienen alta afinidad de unión a células HepG2 y a glóbulos rojos respectivamente (conocidos como cHABPs), han sido modificados (conocidos como mHABPs), sintetizados y evaluados a nivel de respuesta inmune en monos Aotus así como estudiados en su conformación estructural por RMN de 1H. Los resultados muestran que los péptidos nativos no son inmunogénicos, pero pueden inducir altos títulos de anticuerpos cuando sus residuos críticos o sus vecinos son reemplazados por otro con un volumen y masa similar, pero diferente polaridad. El estudio conformacional pone de manifiesto que las estructuras de los péptidos nativos son diferentes de sus péptidos modificados ya sea que muestren regiones estructuradas más cortas o más largas o que no presenten ninguna, en comparación con sus análogos modificados altamente inmunogénicos. Las características estereoquímicas particulares en las cadenas laterales de algunos residuos de aminoácidos de estos péptidos modificados así como los rasgos fisicoquímicos parecen jugar un rol importante en la respuesta inmune apropiada cuando estos fueron inmunizados en grupos de monos Aotus confiriendo un avance al diseño de una vacuna contra malaria totalmente eficaz.