953 resultados para FUNGAL PATHOGEN


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The richness of the parasitic community associated with social insect colonies has rarely been investigated. Moreover, understanding how hosts and pathogens interact in nature is important to interpret results from laboratory experiments. Here, we assessed the diversity, prevalence and virulence of fungal entomopathogens present around and within colonies of the ant Formica selysi. We detected eight fungal species known to be entomopathogenic in soil sampled from the habitat of ants. Six of these entomopathogens were found in active nests, abandoned nests, and corpses from dump piles or live ants. A systematic search for the presence of three generalist fungal entomopathogens in ant colonies revealed a large variation in their prevalence. The most common of the three pathogens, Paecilomyces lilacinus, was detected in 44% of the colonies. Beauveria bassiana occurred in 17% of the colonies, often in association with P. lilacinus, whereas we did not detect Metarhizium brunneum (formerly M. anisopliae) in active colonies. The three fungal species caused significant mortality to experimentally challenged ants, but varied in their degree of virulence. There was a high level of genetic diversity within B. bassiana isolates, which delineated three genetic strains that also differed significantly in their virulence. Overall, our study indicates that the ants encounter a diversity of fungal entomopathogens in their natural habitat. Moreover, some generalist pathogens vary greatly in their virulence and prevalence in ant colonies, which calls for further studies on the specificity of the interactions between the ant hosts and their fungal pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fungal symbionts commonly occur in plants influencing host growth, physiology, and ecology (Carlile et al., 2001). However, while whole-plant growth responses to biotrophic fungi are readily demonstrated, it has been much more difficult to identify and detect the physiological mechanisms responsible. Previous work on the clonal grass Glyceria striata has revealed that the systemic fungal endophyte Epichloë glyceriae has a positive effect on clonal growth of its host (Pan & Clay, 2002; 2003). The latest study from these authors, in this issue (pp. 467- 475), now suggests that increased carbon movement in hosts infected by E. glyceriae may function as one mechanism by which endophytic fungi could increase plant growth. Given the widespread distribution of both clonal plants and symbiotic fungi, this research will have implications for our understanding of the ecology and evolution of fungus-plant associations in natural communities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oral administration of rabbit secretory IgA (sIgA) to adult BALB/c mice induced IgA+, IgM+, and IgG+ lymphoblasts in the Peyer's patches, whose fusion with myeloma cells resulted in hybridomas producing IgA, IgM, and IgG1 antibodies to the secretory component (SC). This suggests that SC could serve as a vector to target protective epitopes into mucosal lymphoid tissue and elicit an immune response. We tested this concept by inserting a Shigella flexneri invasin B epitope into SC, which, following reassociation with IgA, was delivered orally to mice. To identify potential insertion sites at the surface of SC, we constructed a molecular model of the first and second Ig-like domains of rabbit SC. A surface epitope recognized by an SC-specific antibody was mapped to the loop connecting the E and F beta strands of domain I. This 8-amino acid sequence was replaced by a 9-amino acid linear epitope from S. flexneri invasin B. We found that cellular trafficking of recombinant SC produced in mammalian CV-1 cells was drastically altered and resulted in a 50-fold lower rate of secretion. However, purification of chimeric SC could be achieved by Ni2+-chelate affinity chromatoraphy. Both wild-type and chimeric SC bound to dimeric IgA, but not to monomeric IgA. Reconstituted sIgA carrying the invasin B epitope within the SC moiety triggers the appearance of seric and salivary invasin B-specific antibodies. Thus, neo-antigenized sIgA can serve as a mucosal vaccine delivery system inducing systemic and mucosal immune responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract The plasmid pME6863, carrying the aiiA gene from the soil bacterium Bacillus sp. A24 that encodes a lactonase enzyme able to degrade N-acyl-homoserine lactones (AHLs), was introduced into the rhizosphere isolate Pseudomonas fluorescens P3. This strain is not an effective biological control agent against plant pathogens. The transformant P. fluorescens P3/pME6863 acquired the ability to degrade AHLs. In planta, P. fluorescens P3/pME6863 significantly reduced potato soft rot caused by Erwinia carotovora and crown gall of tomato caused by Agrobacterium tumefaciens to a similar level as Bacillus sp. A24. Little or no disease reduction was observed for the wild-type strain P3 carrying the vector plasmid without aiiA. Suppression of potato soft rot was observed even when the AHL-degrading P. fluorescens P3/pME6863 was applied to tubers 2 days after the pathogen, indicating that biocontrol was not only preventive but also curative. When antagonists were applied individually with the bacterial plant pathogens, biocontrol activity of the AHL degraders was greater than that observed with several Pseudomonas 2,4-diacetylphloroglucinol-producing strains and with Pseudomonas chlororaphis PCL1391, which relies on production of phenazine antibiotic for disease suppression. Phenazine production by this well characterized biological control strain P. chlororaphis PCL1391 is regulated by AHL-mediated quorum sensing. When P. chlororaphis PCL1391 was co-inoculated with P. fluorescens P3/pME6863 in a strain mixture, the AHL degrader interfered with the normally excellent ability of the antibiotic producer to suppress tomato vascular wilt caused by Fusarium oxysporum f. sp. lycopersici. Our results demonstrate AHL degradation as a novel biocontrol mechanism, but also demonstrate the potential for non-target interactions that can interfere with the biocontrol efficacy of other strains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parasites can cause extensive damage to animal societies in which many related individuals frequently interact. In response, social animals have evolved diverse individual and collective defences. Here, we measured the expression and efficiency of self-grooming and allo-grooming when workers of the ant Formica selysi were contaminated with spores of the fungal entomopathogen Metarhizium anisopliae. The amount of self-grooming increased in the presence of fungal spores, which shows that the ants are able to detect the risk of infection. In contrast, the amount of allo-grooming did not depend on fungal contamination. Workers groomed all nestmate workers that were re-introduced into their groups. The amount of allo-grooming towards noncontaminated individuals was higher when the group had been previously exposed to the pathogen. Allo-grooming decreased the number of fungal spores on the surface of contaminated workers, but did not prevent infection in the conditions tested (high dose of spores and late allo-grooming). The rate of disease transmission to groomers and other nestmates was extremely low. The systematic allo-grooming of all individuals returning to the colony, be they contaminated or not, is probably a simple but robust prophylactic defence preventing the spread of fungal diseases in insect societies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Strict definition of invasive aspergillosis (IA) cases is required to allow precise conclusions about the efficacy of antifungal therapy. The Global Comparative Aspergillus Study (GCAS) compared voriconazole to amphotericin B (AmB) deoxycholate for the primary therapy of IA. Because predefined definitions used for this trial were substantially different from the consensus definitions proposed by the European Organization for Research and Treatment of Cancer/Mycoses Study Group in 2008, we recategorized the 379 episodes of the GCAS according to the later definitions. METHODS: The objectives were to assess the impact of the current definitions on the classification of the episodes and to provide comparative efficacy for probable/proven and possible IA in patients treated with either voriconazole or AmB. In addition to original data, we integrated the results of baseline galactomannan serum levels obtained from 249 (65.7%) frozen samples. The original response assessment was accepted unchanged. RESULTS: Recategorization allowed 59 proven, 178 probable, and 106 possible IA cases to be identified. A higher favorable 12-week response rate was obtained with voriconazole (54.7%) than with AmB (29.9%) (P < .0001). Survival was higher for voriconazole for mycologically documented (probable/proven) IA (70.2%) than with AmB (54.9%) (P = .010). Higher response rates were obtained in possible IA treated with voriconazole vs AmB with the same magnitude of difference (26.2%; 95% confidence interval [CI], 7.2%-45.3%) as in mycologically documented episodes (24.3%; 95% CI, 11.9%-36.7%), suggesting that possible cases are true IA. CONCLUSIONS: Recategorization resulted in a better identification of the episodes and confirmed the higher efficacy of voriconazole over AmB deoxycholate in mycologically documented IA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This handbook has been prepared to complement the informational videotape, Your Ticket to Safety: Bloodborne Pathogen Awareness for Transit Professionals. The handbook also provides a personal and ready reference regarding bloodborne pathogens for public transit system personnel, including managers, drivers, mechanics, other employees and service providers. Additional copies of this handbook and the videotape are available through the Office of Public Transit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(1,3)-b-D-glucan is a component of the fungal cell wall. New assays have made it possible to detect this molecule in a variety of clinical samples such as blood, cerebrospinal fluid, and bronchioalveolar lavage fluid. Detection of this molecule through several assays has been validated as an adjunct method to diagnose invasive fungal infections. With several decades of data and recent positive meta-analyses, these assays have now been sufficiently studied and are ready to enter the mainstream of diagnosis in medical mycology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whereas the reduction of transfusion related viral transmission has been a priority during the last decade, bacterial infection transmitted by transfusion still remains associated to a high morbidity and mortality, and constitutes the most frequent infectious risk of transfusion. This problem especially concerns platelet concentrates because of their favorable bacterial growth conditions. This review gives an overview of platelet transfusion-related bacterial contamination as well as on the different strategies to reduce this problem by using either bacterial detection or inactivation methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Haihtuvien orgaanisten yhdisteiden muodostuminen kuivikkeissa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The azole antifungal fluconazole possesses only fungistatic activity in Candida albicans and, therefore, this human pathogen is tolerant to this agent. However, tolerance to fluconazole can be inhibited when C. albicans is exposed to fluconazole combined with the immunosuppressive drug cyclosporin A, which is known to inhibit calcineurin activity in yeast. A mutant lacking both alleles of a gene encoding the calcineurin A subunit (CNA) lost viability in the presence of fluconazole, thus making calcineurin essential for fluconazole tolerance. Consistent with this observation, tolerance to fluconazole was modulated by calcium ions or by the expression of a calcineurin A derivative autoactivated by the removal of its C-terminal inhibitory domain. Interestingly, CNA was also essential for tolerance to other antifungal agents (voriconazole, itraconazole, terbinafine, amorolfine) and to several other metabolic inhibitors (caffeine, brefeldin A, mycophenolic acid, fluphenazine) or cell wall-perturbing agents (SDS, calcofluor white, Congo red), thus indicating that the calcineurin pathway plays an important role in the survival of C. albicans in the presence of external growth inhibitors. Several genes, including PMC1, a vacuolar calcium P-type ATPase, were regulated in a calcineurin- and fluconazole-dependent manner. However, PMC1 did not play a direct role in the survival of C. albicans when exposed to fluconazole. In addition to these different properties, calcineurin was found to affect colony morphology in several media known to modulate the C. albicans dimorphic switch. In particular, calcineurin was found to be essential for C. albicans viability in serum-containing media. Finally, calcineurin was found to be necessary for the virulence of C. albicans in a mice model of infection, thus making calcineurin an important element for adequate adaptation to the conditions of the host environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proteins belonging to the CAP superfamily are present in all kingdoms of life and have been implicated in different physiological processes. Their molecular mode of action, however, is poorly understood. Saccharomyces cerevisiae expresses three members of this superfamily, pathogen-related yeast (Pry)1, -2, and -3. We have recently shown that Pry function is required for the secretion of cholesteryl acetate and that Pry proteins bind cholesterol and cholesteryl acetate, suggesting that CAP superfamily members may generally act to bind sterols or related small hydrophobic compounds. Here, we analyzed the mode of sterol binding by Pry1. Computational modeling indicates that ligand binding could occur through displacement of a relatively poorly conserved flexible loop, which in some CAP family members displays homology to the caveolin-binding motif. Point mutations within this motif abrogated export of cholesteryl acetate but did not affect binding of cholesterol. Mutations of residues located outside the caveolin-binding motif, or mutations in highly conserved putative catalytic residues had no effect on export of cholesteryl acetate or on lipid binding. These results indicate that the caveolin-binding motif of Pry1, and possibly of other CAP family members, is crucial for selective lipid binding and that lipid binding may occur through displacement of the loop containing this motif.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyzed the species distribution of Candida blood isolates (CBIs), prospectively collected between 2004 and 2009 within FUNGINOS, and compared their antifungal susceptibility according to clinical breakpoints defined by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) in 2013, and the Clinical and Laboratory Standards Institute (CLSI) in 2008 (old CLSI breakpoints) and 2012 (new CLSI breakpoints). CBIs were tested for susceptiblity to fluconazole, voriconazole and caspofungin by microtitre broth dilution (Sensititre(®) YeastOne? test panel). Of 1090 CBIs, 675 (61.9%) were C. albicans, 191 (17.5%) C. glabrata, 64 (5.9%) C. tropicalis, 59 (5.4%) C. parapsilosis, 33 (3%) C. dubliniensis, 22 (2%) C. krusei and 46 (4.2%) rare Candida species. Independently of the breakpoints applied, C. albicans was almost uniformly (>98%) susceptible to all three antifungal agents. In contrast, the proportions of fluconazole- and voriconazole-susceptible C. tropicalis and F-susceptible C. parapsilosis were lower according to EUCAST/new CLSI breakpoints than to the old CLSI breakpoints. For caspofungin, non-susceptibility occurred mainly in C. krusei (63.3%) and C. glabrata (9.4%). Nine isolates (five C. tropicalis, three C. albicans and one C. parapsilosis) were cross-resistant to azoles according to EUCAST breakpoints, compared with three isolates (two C. albicans and one C. tropicalis) according to new and two (2 C. albicans) according to old CLSI breakpoints. Four species (C. albicans, C. glabrata, C. tropicalis and C. parapsilosis) represented >90% of all CBIs. In vitro resistance to fluconazole, voriconazole and caspofungin was rare among C. albicans, but an increase of non-susceptibile isolates was observed among C. tropicalis/C. parapsilosis for the azoles and C. glabrata/C. krusei for caspofungin according to EUCAST and new CLSI breakpoints compared with old CLSI breakpoints.