953 resultados para FULL


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, a multi physics simulation of an innovative safety system for light water nuclear reactor is performed, with the aim to increase the reliability of its main decay heat removal system. The system studied, denoted by the acronym PERSEO (in Pool Energy Removal System for Emergency Operation) is able to remove the decay power from the primary side of the light water nuclear reactor through a heat suppression pool. The experimental facility, located at SIET laboratories (PIACENZA), is an evolution of the Thermal Valve concept where the triggering valve is installed liquid side, on a line connecting two pools at the bottom. During the normal operation, the valve is closed, while in emergency conditions it opens, the heat exchanger is flooded with consequent heat transfer from the primary side to the pool side. In order to verify the correct system behavior during long term accidental transient, two main experimental PERSEO tests are analyzed. For this purpose, a coupling between the mono dimensional system code CATHARE, which reproduces the system scale behavior, with a three-dimensional CFD code NEPTUNE CFD, allowing a full investigation of the pools and the injector, is implemented. The coupling between the two codes is realized through the boundary conditions. In a first analysis, the facility is simulated by the system code CATHARE V2.5 to validate the results with the experimental data. The comparison of the numerical results obtained shows a different void distribution during the boiling conditions inside the heat suppression pool for the two cases of single nodalization and three volume nodalization scheme of the pool. Finaly, to improve the investigation capability of the void distribution inside the pool and the temperature stratification phenomena below the injector, a two and three dimensional CFD models with a simplified geometry of the system are adopted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dendritic systems, and in particular polyphenylene dendrimers, have recently attracted considerable attention from the synthetic organic chemistry community, as well as from photophysicists, particularly in view of the search for synthetic model analogies to photoelectric materials to fabricate organic light-emitting diodes (OLEDs), and even more advanced areas of research such as light-harvesting system, energy transfer and non-host device. Geometrically, dendrimers are unique systems that consist of a core, one or more dendrons, and surface groups. The different parts of the macromolecule can be selected to give the desired optoelectronic and processing properties. Compared to small molecular or polymeric light-emitting materials, these dendritic materials can combine the benefits of both previous classes. The high molecular weights of these dendritic macromolecules, as well as the surface groups often attached to the distal ends of the dendrons, can improve the solution processability, and thus can be deposited from solution by simple processes such as spin-coating and ink-jet printing. Moreover, even better than the traditional polymeric light-emitting materials, the well-defined monodisperse distributed dendrimers possess a high purity comparable to that of small molecules, and as such can be fabricated into high performance OLEDs. Most importantly, the emissive chromophores can be located at the core of the dendrimer, within the dendrons, and/or at the surface of the dendrimers because of their unique dendritic architectures. The different parts of the macromolecule can be selected to give the desired optoelectronic and processing properties. Therefore, the main goals of this thesis are the design and synthesis, characterization of novel functional dendrimers, e.g. polytriphenylene dendrimers for blue fluorescent, as well as iridium(III) complex cored polyphenylene dendrimers for green and red phosphorescent light emitting diodes. In additional to the above mentioned advantages of dendrimer based OLEDs, the modular molecular architecture and various functionalized units at different locations in polyphenylene dendrimers open up a tremendous scope for tuning a wide range of properties in addition to color, such as intermolecular interactions, charge mobility, quantum yield, and exciton diffusion. In conclusion, research into dendrimer containing OLEDs combines fundamental aspects of organic semiconductor physics, novel and highly sophisticated organic synthetic chemistry and elaborate device technology.rn

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L'elaborato affronta la definizione di differenti strategie per il campionamento e la ricostruzione di segnali wavefield per applicazioni di monitoraggio strutturale. In accordo con quanto indicato dalla teoria del Compressive Sensing, obiettivo della tesi è la minimizzazione del numero di punti di acquisizione al fine di ridurre lo sforzo energetico del campionamento. I risultati sono validati in ambiente Matlab utilizzando come riferimento segnali acquisiti su setup sperimentali in alluminio o materiale composito in presenza di diverse tipologie di difetto.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Vrancea region, at the south-eastern bend of the Carpathian Mountains in Romania, represents one of the most puzzling seismically active zones of Europe. Beside some shallow seismicity spread across the whole Romanian territory, Vrancea is the place of an intense seismicity with the presence of a cluster of intermediate-depth foci placed in a narrow nearly vertical volume. Although large-scale mantle seismic tomographic studies have revealed the presence of a narrow, almost vertical, high-velocity body in the upper mantle, the nature and the geodynamic of this deep intra-continental seismicity is still questioned. High-resolution seismic tomography could help to reveal more details in the subcrustal structure of Vrancea. Recent developments in computational seismology as well as the availability of parallel computing now allow to potentially retrieve more information out of seismic waveforms and to reach such high-resolution models. This study was aimed to evaluate the application of a full waveform inversion tomography at regional scale for the Vrancea lithosphere using data from the 1999 six months temporary local network CALIXTO. Starting from a detailed 3D Vp, Vs and density model, built on classical travel-time tomography together with gravity data, I evaluated the improvements obtained with the full waveform inversion approach. The latter proved to be highly problem dependent and highly computational expensive. The model retrieved after the first two iterations does not show large variations with respect to the initial model but remains in agreement with previous tomographic models. It presents a well-defined downgoing slab shape high velocity anomaly, composed of a N-S horizontal anomaly in the depths between 40 and 70km linked to a nearly vertical NE-SW anomaly from 70 to 180km.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geometric packing problems may be formulated mathematically as constrained optimization problems. But finding a good solution is a challenging task. The more complicated the geometry of the container or the objects to be packed, the more complex the non-penetration constraints become. In this work we propose the use of a physics engine that simulates a system of colliding rigid bodies. It is a tool to resolve interpenetration conflicts and to optimize configurations locally. We develop an efficient and easy-to-implement physics engine that is specialized for collision detection and contact handling. In succession of the development of this engine a number of novel algorithms for distance calculation and intersection volume were designed and imple- mented, which are presented in this work. They are highly specialized to pro- vide fast responses for cuboids and triangles as input geometry whereas the concepts they are based on can easily be extended to other convex shapes. Especially noteworthy in this context is our ε-distance algorithm - a novel application that is not only very robust and fast but also compact in its im- plementation. Several state-of-the-art third party implementations are being presented and we show that our implementations beat them in runtime and robustness. The packing algorithm that lies on top of the physics engine is a Monte Carlo based approach implemented for packing cuboids into a container described by a triangle soup. We give an implementation for the SAE J1100 variant of the trunk packing problem. We compare this implementation to several established approaches and we show that it gives better results in faster time than these existing implementations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: Scaling and root planing are the causal procedure in the treatment of periodontitis. Many attempts have been made to improve the outcome. The aim of this study was to verify the influence of the extended use of chlorhexidine after one-stage full-mouth (FM) SRP in patients with chronic periodontitis on the clinical outcome after 3 months. METHODS: Eighty-one patients with pockets > or =5 mm were treated by FM. All patients rinsed additionally with 0.2% chlorhexidine (CHX) twice daily over 3 months. Plaque index, bleeding on probing, probing depth (PD) and clinical attachment level (CAL) were recorded at baseline and after 1 and 3 months. RESULTS: In the test group, all variables were significantly improved after 1 and 3 months. Mean reduction of PD and CAL gain was 2.25 +/- 1.08 and 1.67 +/- 1.08 after 1 and 2.99 +/- 1.11 and 2.33 +/- 1.31 after 3 months respectively. CONCLUSIONS: Over 3 months of extended use of CHX mouth rinse after SRP showed slightly but statistically significant better results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the impact on microbiologic variables of full-mouth scaling (FMS) and conventional scaling and root planing (cSRP) after 12 months.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Excessive cantilever lengths of fixed implant-supported prostheses may have functional and biomechanical disadvantages. This study reports the clinical outcomes of unconventional implants placed for distal support of a fixed implant-supported prostheses. Seven extraoral implants with intraosseous lengths of 2.5 to 4.0 mm were placed in four patients. Distal cantilevers had a mean length of 29.8 mm (range, 18.6 to 39.3 mm). No bone loss or other adverse events were found. The prosthetic plan was maintained in all patients. Within the limits of the employed research design, this concept seems to be a successful option for fixed complete implant-supported prosthesis treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lodox Statscan provides high-speed, high-quality, low radiation, full body imaging in a single scan, combined with three-dimensional reconstructive and zooming functionality. Several trauma centres have incorporated it into their advanced trauma life support protocol. This review gives a brief overview of the system.