914 resultados para FT-IR ATR


Relevância:

80.00% 80.00%

Publicador:

Resumo:

By using inorganic salts as raw materials and citric acid as complexing agent, spinel oxide ZnGa2O4 and Mn2+, Eu3+-doped ZnGa2O4 phosphor powders were prepared by a citrate-gel process. X-ray diffraction (XRD), TG-DTA, FT-IR. and luminescence excitation and emission spectra were used to characterize the resulting products. The results of XRD reveal that the powders begin to crystallize at 500 degreesC and pure ZnGa2O4 phase is obtained at 700 degreesC, which agrees well with the results of TG-DTA and FT-IR. In the crystalline ZnGa2O4, the Eu shows its characteristic red (615 nm, D-5(0)-F-7(2)) emission with a quenching concentration of 5 mol% (of Ga3+), and the Mn shows green emission (505 nm, T, A,) with a quenching concentration of 0.1 mol% (of Zn2+). The luminescence mechanism of ZnGa2O4:Mn2+/Eu3+ is presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

By using metal nitrates and oxides as the starting materials, Y2Al5O12 (YAG) and YAG:Re3+ (Re = Ce, Sm, Th) powder phosphors were prepared by solid-state (SS), coprecipitation (CP) and citrate gel (CG) methods. The resulting YAG and YAG-based phosphors were characterized by XRD, FT-IR, SEM and photoluminescent excitation and emission spectra. The purified crystalline phases of YAG were obtained at 800 degreesC (CG) and 900 degreesC (CP, SS). At an identical annealing temperature and doping concentration, the doped rare-earth ions showed the stronger emission intensity in the CP- and SS-derived phosphors than the CG-derived YAG phosphors. The poor emission intensity for the CG-derived phosphors is mainly caused by the contamination of carbon impurities from citric acid in the starting materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The reaction of trivacant precursor Nag [A-PW9O34] . 19H(2)O with Ti(SO4)(2) affords the novel dimeric, di-Ti-IV-substituted tungstophosphate K4Na6[alpha-1,2-PW10Ti2O39](2) . 14H(2)O. The X-ray structural determination shows the dimeric, anhydride structure was formed by two Ti-O-Ti bonds linking two di-titanium-substituted Keggin anion [alpha-1,2-PW10Ti2O40]. It was also characterized by elemental analysis, TGA, FT-IR and U-V-vis spectroscopies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new kind of luminescent organic-inorganic hybrid material (denoted Hybrid I) consisting of europium 1,10-phenanthroline complexes covalently attached to a silica-based network was prepared by a sol-gel process. 1,10-Phenanthroline grafted to 3-(triethoxysilyl)propyl isocyanate was used as one of the precursors for the preparation of an organic-inorganic hybrid materials. For comparison purposes, the hybrid material (denoted Hybrid II) in which phenanthroline was not grafted onto the silica backbone of the frameworks was also prepared. Elemental analysis; NMR, FT-IR, UV/vis absorption, and luminescence spectroscopies, and luminescence decay analysis were used to characterize the obtained hybrid materials. It is shown that the homogeneity of Hybrid I is superior to that of Hybrid II, and a higher concentration europium can be incorporated into Hybrid I than Hybrid II. Excitation at the ligand absorption wavelength (283 nm) resulted in the strong emission of the Eu3+ D-5(0)-F-7(J) (J = 0-4) transition lines as a result of the efficient energy transfer from the ligands to the EU3+ in Hybrid I. The number of water molecules coordinated to the europium ion was estimated, and the structure of the as-synthesized Hybrid I was predicted on the basis of the experimental results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

By using metal nitrates as starting materials and citric acid as complexing agent, Y3Al5O12 (YAG) and Y3Al5O12:Eu (1 mol%) (YAG:Eu) powder phosphors were prepared by a citrate-gel method. The formation process of YAG and YAG:Eu were investigated by means of XRD, TG-DTA and FT-IR spectra. The purified crystalline phases of YAG and YAG:Eu were obtained at 800 degreesC. The crystalline YAG:Eu phosphors showed an orange-red emission with D-5(0)-F-7(1) (591 nm) as the most prominent group, whose intensity was dependent on the pH value of the starting solution, citric acid content and firing temperature. It has been found that the suitable pH and citric acid/metal ratio are 3 and 2 for obtaining the highest emission intensity, respectively. The emission intensity increases steadily with increasing the annealing temperature from 800 to 1200 degreesC, and nearly remains constant after 1200 degreesC. Furthermore, great differences were observed for the lifetimes and the charge transfer band of Eu3+ in crystalline and amorphous states of YAG.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Organic-inorganic hybrid SiO2 xerogels were prepared by the sol-gel method under various preparation conditions and compositions by using tetraethoxysilane (TEOS), (3-aminopropyl) triethoxysilane (A-PS), (3-glycidoxypropyl) trimethoxysilane (GPS), organic acid (CH3COOH) and inorganic acids (HCl, HNO3, H2SO4) as the main precursors. Luminescence and FT-IR spectra were used to characterize the resulted hybrid SiO2 xerogels. The result of FT-IR spectrum shows that the xerogels are composed of non-crystalline -Si-O-Si- networks containing some organic groups such as -NH, -CH and -OH. Under the excitation of 365 nm, all the hybrid xerogels exhibit strong luminescence in the blue region, but the emission intensity and position depend on the starting precursor compositions to a large extent. Suitable amount of polyethylene glycol (PEG500 and PEG10000) in the hybrid xerogels can enhance the emission intensity. Additionally, the emission intensity of the hybrid xerogels increases with heat treatment temperature in the range of ambient to 200degreesC, and vacuum condition is also able to enhance the emission intensity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nanocrystalline YVO4:A (A = Eu3+, Dy3+, Sm3+, Er3+) phosphor films and their patterning were fabricated by a Pechini sol-gel process combined with soft lithography. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), atomic force microscopy (AFM) and optical microscopy, UV/vis transmission and absorption spectra, photoluminescence (PL) spectra, and lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 400 degreesC and the crystallinity increased with the increase of annealing temperatures. Transparent nonpatterned phosphor films were uniform and crack-free, which mainly consisted of grains with an average size of 90 nm. Patterned gel and crystalline phosphor film bands with different widths (5-60 mum) were obtained. Significant shrinkage and a few defects were observed in the patterned films during the heat treatment process. The doped rare earth ions (A) showed their characteristic emission in crystalline YVO4 phosphor films because of an efficient energy transfer from vanadate groups to them. The Sm3+ and Er3+ ions also showed upconversion luminescence in a YVO4 film host. Both the lifetimes and PL intensity of the rare earth ions increased with increasing annealing temperature from 400 to 800 degreesC, and the optimum concentration for Eu3+ was determined to be 7 mol % and those for Dy3+, Sm3-, and Er3+ were 2 Mol % of Y3- in YVO4 films, respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rare-earth and lead ions (Eu3+, Tb3+, Dy3+, Pb2+) doped Ca2Y8 (SiO4)(6)O-2 and Ca2Gd8(SiO4)(6)O-2 thin films have been dip- coated on silicon and quartz glass substrates through the sol- gel route. X- Ray diffraction (XRD), TG- DTA, scanning electron microscopy (SEM), atomic force microscopy (AFM), FT- IR and luminescence excitation and emission spectra as well as luminescence decays were used to characterize the resulting films. The results of XRD reveal that these films remain amorphous below 700 degreesC, begin to crystallize at 800 degreesC and crystallize completely around 1000 degreesC with an oxyapatite structure. The grain structure of the film can be seen clearly from SEM and AFM micrographs, where particles with various shapes and average size of 250 nm can be resolved. Eu3+ and Tb3+ show their characteristic red (D-5(0)-F-7(2)) and green (D-5(4) - F-7(5)) emission in the films with a quenching concentration of 10 and 6 mol% (of Y3+), respectively. The lifetime and emission intensity of Eu3+ increase with the temperature treatment from 700 to 1100 degreesC, while those of Tb3+ show a maximum at 800 degreesC. Energy transfer phenomena have been observed by activating the oxyapatite film host- lattice Ca2Gd8(SiO4)(6)O-2 with Tb3+ (Dy3+). In addition, Pb2+ can sensitize the Gd3+ sublattice in Ca2Gd8(SiO4)(6)O-2.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

采用Pechini溶胶 凝胶法制备了纳米级Y2O3∶Eu3+发光薄膜,同时,通过软石印技术得到了条纹宽度为5~60μm的Y2O3∶Eu3+图案化发光薄膜。通过X射线衍射(XRD)、付里叶变换 红外光谱(FT IR)、原子力显微镜(AFM),光致发光(PL)光谱及寿命等方法对得到的发光薄膜进行了表征。XRD结果表明500℃时薄膜开始结晶,900℃已结晶完全,得到了立方相的产物。图案化的条纹在烧结的过程中发生了明显的收缩(50%)。Y2O3基质向掺杂的稀土离子Eu3+发生了有效的能量传递,使得Eu3+显示出5D0 7FJ(J=0,1,2,3,4)特征发射。寿命和光致发光光谱的研究表明,发光强度随着温度的升高而增强。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this presentation, nanocrystalline YVO4:A (A=Eu3+, Dy3+, SM3+, Er3+) phosphor films and their patterning were fabricated by a Pechini sol-gel process combined with a soft lithography (micro-molding in capillaries). XRD, FT-IR, AFM and optical microscope, absorption spectra, photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 400 degrees C and the crystallinity increased with the increase of annealing temperatures. Transparent nonpattemed phosphor films were uniform and crack free, which mainly consisted of grains with an average size of 90nm. Patterned crystalline phosphor film bands with different widths (5-30 mu m) were obtained. The doped rare earth ions (A) showed their characteristic emission in crystalline YVO4 phosphor films due to an efficient energy transfer from vanadate groups to them. The Sm3+ and Er3+ ions also showed upconversion luminescence in YVO4 film host. The optimum concentration for Eu3+ was determined to be 7 mol% and those for Dy3+, Sm3+, Er3+ were 2 Mol% of Y3+ in YVO4 films, respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Naphthalene-labeled polypropylene (PP) was prepared by melt reaction of maleic anhydride-grafted-polypropylene (PP-g-MA) with 1-aminonaphthalene in a Barabender mixer chamber. The structure of the product was analyzed with fourier transform infrared (FT-IR), ultraviolet (UV) and fluorescence. The results showed that naphthyl groups grafted onto the PP molecular chains through the imide bonds formed between MA and 1-aminonaphthalene. The content of the chromophores was 1.8 X 10(-4) mol g(-1) measured by elemental analysis. Isothermal crystallization behavior was studied by differential scanning calorimeter (DSC). Labeled PP had a higher crystallization rate than PP-g-MA. Wide-angle X-Ray diffraction (WAXD) analysis revealed that labeled PP had higher crystallinity than PP-g-MA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of cardo polyaryletherketones and polyaryletersulfones containing alkyl substituents of a different kind, number and volume were synthesized from bis(4-nitrophenyl)ketone or bis(4-fluorophenyl)sulfone with various alkyl substituted phenolphthaleins by polycondensation using K2CO3 as catalyst. Their chemical and aggregation structures were confirmed by FT-IR, H-1-NMR and WAXD. The resulting polymers were soluble in a variety of common polar solvents and, transparent, colorless, and tough films could be easily cast from 1,1,2-trichluoroethane solution. Their tensile strength, elongation at break and tensile modulis were in the range of 70.5 similar to 97.1MPa, 4.49%similar to7.81%, and 1.69 similar to2.27GPa, respectively. The prepared polymers had reasonably high glass transition temperatures at 207 to 269 degreesC, and showed fairly good thermal stability with 5% thermal decomposition loss above 410 degreesC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The degradation behavior of polyimide (PMDA-ODA) induced by nitrogen laser irradiation was studied. The changes in the surface morphology and the composition of the irradiated polyimide films were examined by scanning electron microscopy, X-ray photoelectron spectroscopy and FT-IR spectroscopy. The initial reaction was achieved by photochemical degradation of polyimide in the highly electronic excited state by the absorption of a second 337 nm photon. Atmospheric oxygen sequentially reacted with the produced radicals to form a highly oxidized layer. The formation of carbonyl group was enhanced by the heat remaining on the irradiated polyimide film surfaces. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new type of organic-inorganic composite material was prepared by sol-gel method, and a peroxidase biosensor was fabricated by simply dropping sor-gel-peroxidase mixture onto glassy carbon electrode surface. The sol-gel composite film and enzyme membrane were characterized by Fourier-transform infrared (FT-IR) spectroscopy and EQCM, the electrochemical behavior of the biosensor was studied with potassium hexacyanoferrate(II) as a mediator, and the effects of pH and operating potential were explored for optimum analytical performance by using amperometric method. The response time of the biosensor was about 10 s; the linear range was up to 3.4 mM with a detection limit of 5 x 10(-7) M. The sensor also exhibited high sensitivity (15 mu A mM(-1)) and good long-term stability. In addition, the performance of the biosensor was investigated using flow injection analysis (FIA), and the determination of hydrogen peroxide in real samples was discussed. (C)2000 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polyaniline nanoparticles were prepared on a highly oriented pyrolytic graphite (HOPG) surface from dilute polyaniline acidic solution (1 mM aniline + 1 M HClO4) using a pulsed potentiostatic method. Electrochemistry, Fourier transform infrared external reflection spectroscopy (FT-IR-ERS), X-ray photoelectron spectroscopy (XPS) and tapping-mode atomic force microscopy (TMAFM) were: used to characterize the composition and structure of the polyaniline nanoparticles. FT-IR-ERS and XPS results revealed that the polyaniline was in its emeraldine form. TMAFM measurement showed that the electropolymerized polyaniline nanoparticles dispersed on the:HOPG surface with a coverage of about 10(10) cm(-2). These nanoparticles were disk-shaped having a height of 10(-30) Angstrom and an apparent diameter varying from 200 to 600 Angstrom. The particle dimensions increased with the electropolymerization charge (Q) over the interval from 5.7 to 19.3 mu C cm(-2) (C) 2000 Elsevier Science S.A. All rights reserved.