991 resultados para FRACTION UNBOUND
Resumo:
Leg 94 Sites are located in a large geographic area of the northeastern Atlantic. Clay mineral analyses of the sediments recovered on Leg 94 (Eocene to the present), together with results obtained from previous DSDP legs (47B, 48, 80, 81, 82), provide greater insight into the paleoenvironmental evolution of the northeastern Atlantic. The characteristics of Eocene clay sediments are regional, reflecting, in the absence of strong bottom currents, the influence of neighboring petrographic environments: basic volcanic rocks (Sites 403-406, 552, and 608) and acid volcanic rocks (Sites 508 to 510). During the Oligocene, atmospheric circulation patterns left their mineralogical signatures in the southern part of the area investigated (Sites 558 and 608), whereas during the Miocene the intrusion of northern water masses led to the gradual homogenization of the clay sedimentation throughout the North Atlantic. In the late Pliocene, input from glacial sources became widespread.
Resumo:
This paper presents data on trace elements (Sr, Mg, Na, K, Mn, Fe, Ni, Cr) and isotopes (13C, 18O) on the carbonate fraction of bulk sediments from the Coniacian to Paleocene samples of Hole 516F. Relationships of trace elements to mineralogy and stratigraphic position are discussed at length, with special emphasis on 1) the differences between Hole 516F and other oceanic sites, and 2) the transitions observed at the Cretaceous/Tertiary boundary. Isotope data are compared to those obtained in other localities of the same age. The sections show the same major 13C variations at the Cretaceous/Tertiary boundary, indicating that this event is a planetary phenomenon.
Resumo:
Holes 1209A and 1211A on Southern High, Shatsky Rise contain expanded, nearly continuous records of carbonate-rich sediment deposited in deep water of the equatorial Pacific Ocean during the Paleocene and Eocene. In this study, we document intervals of carbonate dissolution in these records by examining temporal changes in four parameters: carbonate content, coarse size fraction (>38 µm), benthic foraminiferal abundance, and planktonic foraminiferal fragmentation ratio. Carbonate content is not a sensitive indicator of carbonate dissolution in the studied sections, although rare intervals of low carbonate may reflect times of relatively high dissolution. The proportion of coarse size fraction does not accurately record carbonate dissolution either because the relative abundance of nannofossils largely determines the grain-size distribution. Benthic abundance and fragmentation covary (r**2 = 0.77) and are probably the best indicators for carbonate dissolution. For both holes, records of these parameters indicate two episodes of prominent dissolution. The first of these occurs in the upper Paleocene (~59-58 Ma) and the second in the middle to upper Eocene (~45-33.7 Ma). Other intervals of enhanced carbonate dissolution are located in the upper Paleocene (~56 Ma) and in the upper lower Eocene (~51 Ma). Enhanced preservation of planktonic foraminiferal assemblages marks the start of both the Paleocene and Eocene epochs.