817 resultados para FIELD METABOLIC-RATE
Resumo:
The accompanying collective research report is the result of the research project in 198690 between The Finnish Academy and the former Soviet Academy of Sciences. The project was organized around common field work in Finland and in the former Soviet Union and theoretical analyses of tree growth determining processes. Based on theoretical analyses, dynamic stand growth models were made and their parameters were determined utilizing the field results. Annual cycle affects the tree growth. Our theoretical approach was based on adaptation to local climate conditions from Lapland to South Russia. The initiation of growth was described as a simple low and high temperature accumulation driven model. Linking the theoretical model with long term temperature data allowed us to analyze what type of temperature response produced favorable outcome in different climates. Initiation of growth consumes the carbohydrate reserves in plants. We measured the dynamics of insoluble and soluble sugars in the very northern and Karelian conditions. Clear cyclical pattern was observed but the differences between locations were surprisingly small. Analysis of field measurements of CO2 exchange showed that irradiance is the dominating factor causing variation in photosynthetic rate in natural conditions during summer. The effect of other factors is so small that they can be omitted without any considerable loss of accuracy. A special experiment carried out in Hyytiälä showed that the needle living space, defined as the ratio between the shoot cylindric volume and needle surface area, correlates with the shoot photosynthesis. The penetration of irradiance into Scots pine canopy is a complicated phenomenon because of the movement of the sun on the sky and the complicated structure of branches and needles. A moderately simple but balanced forest radiation regime submodel was constructed. It consists of the tree crown and forest structure, the gap probability calculation and the consideration of spatial and temporal variation of radiation inside the forest. The common field excursions in different geographical regions resulted in a lot of experimental data of regularities of woody structures. The water transport seems to be a good common factor to analyse these properties of tree structure. There are evident regressions between cross-sectional areas measured at different locations along the water pathway from fine roots to needles. The observed regressions have clear geographical trends. For example, the same cross-sectional area can support three times higher needle mass in South Russia than in Lapland. Geographical trends can also be seen in shoot and needle structure. Analysis of data published by several Russian authors show, that one ton of needles transpire 42 ton of water a year. This annual amount of transpiration seems to be independent of geographical location, year and site conditions. The produced theoretical and experimental material is utilised in the development of stand growth model that describes the growth and development of Scots pine stands in Finland and the former Soviet Union. The core of the model is carbon and nutrient balances. This means that carbon obtained in photosynthesis is consumed for growth and maintenance and nutrients are taken according to the metabolic needs. The annual photosynthetic production by trees in the stand is determined as a function of irradiance and shading during the active period. The utilisation of the annual photosynthetic production to the growth of different components of trees is based on structural regularities. Since the fundamental metabolic processes are the same in all locations the same growth model structure can be applied in the large range of Scots pine. The annual photosynthetic production and structural regularities determining the allocation of resources have geographical features. The common field measurements enable the application of the model to the analysis of growth and development of stands growing on the five locations of experiments. The model enables the analysis of geographical differences in the growth of Scots pine. For example, the annual photosynthetic production of a 100-year-old stand at Voronez is 3.5 times higher than in Lapland. The share consumed to needle growth (30 %) and to growth of branches (5 %) seems to be the same in all locations. In contrast, the share of fine roots is decreasing when moving from north to south. It is 20 % in Lapland, 15 % in Hyytiälä Central Finland and Kentjärvi Karelia and 15 % in Voronez South Russia. The stem masses (115113 ton/ha) are rather similar in Hyytiälä, Kentjärvi and Voronez, but rather low (50 ton/ha) in Lapland. In Voronez the height of the trees reach 29 m being in Hyytiälä and Kentjärvi 22 m and in Lapland only 14 m. The present approach enables utilization of structural and functional knowledge, gained in places of intensive research, in the analysis of growth and development of any stand. This opens new possibilities for growth research and also for applications in forestry practice.
Hypersonic stagnation‐point boundary layers with massive blowing in the presence of a magnetic field
Resumo:
The effect of massive blowing rates on the steady laminar hypersonic boundary‐layer flow of an electrically conducting fluid in the stagnation region of an axisymmetric body with an applied magnetic field has been studied. The governing equations have been solved numerically by combining the implicit finite‐difference scheme with the quasi‐linearization technique. It is observed that the effect of massive blowing rates is to remove the viscous layer away from the boundary, whereas the effect of the magnetic field is just the opposite. It is also found that the velocity overshoot increases with blowing rates and also with magnetic field. The effect of the variation of the density‐viscosity product across the boundary layer is strong only when the blowing rate is small, but for the massive blowing rate the effect is negligible.
Resumo:
Pure Y2O3 and Y2O3---ZrO2 solid solutions have been prepared by melt atomization and by pyrolysis of nitrate solutions. Extended solubility is readily achieved in both techniques for the entire composition range investigated: melts with 0–30% ZrO2 and precursors with 0–50% ZrO2. However, solidification of under cooled droplets yields almost exclusively single phase powders with the structure of cubic yttria (D53). In contrast, the pyrolysis route leads to a sequence of metastable microstructures beginning with a nanocrystalline disordered fluorite-based (C1) solid solution. Further heating leads to the evolution of much larger (micron size) flake crystals with a {001} texture, concurrent with partial ordering of the oxygen ions to the sites occupied in the D53 structure. The driving force for ordering and the rate of grain growth decrease with increasing ZrO2 addition. Abrupt heating to high temperatures or electron irradiation can induce ordering without substantial grain growth. There is no significant reduction in porosity during the recrystallization, which with the other observations suggests that grain growth is driven by the free energy available for the ordering transformation from fluorite to the yttria structure. This route offers opportunities for single crystal thin film development at relatively low processing temperatures.
Resumo:
Pure Y2O3 and Y2O3-ZrO2 solid solutions have been prepared by melt atomization and by pyrolysis of nitrate solutions. Extended solubility is readily achieved in both techniques for the entire composition range investigated: melts with 0-30% ZrO2 and precursors with 0-50% ZrO2. However, solidification of under cooled droplets yields almost exclusively single phase powders with the structure of cubic yttria (D5(3)). In contrast, the pyrolysis route leads to a sequence of metastable microstructures beginning with a nanocrystalline disordered fluorite-based (C1) solid solution. Further heating leads to the evolution of much larger (micron size) flake crystals with a {001} texture, concurrent with partial ordering of the oxygen ions to the sites occupied in the D5(3) structure. The driving force for ordering and the rate of grain growth decrease with increasing ZrO2 addition. Abrupt heating to high temperatures or electron irradiation can induce ordering without substantial grain growth. There is no significant reduction in porosity during the recrystallization, which with the other observations suggests that grain growth is driven by the free energy available for the ordering transformation from fluorite to the yttria structure. This route offers opportunities for single crystal thin film development at relatively low processing temperatures.
Resumo:
The coherent flame model uses the strain rate to predict reaction rate per unit flame surface area and some procedure that solves for the dynamics of flame surfaces to predict species distributions. The strainrate formula for the reaction rate is obtained from the analytical solution for a flame in a laminar, plane stagnation point flow. Here, the formula's effectiveness is examined by comparisons with data from a direct numerical simulation (DNS) of a round jetlike flow that undergoes transition to turbulence. Significant differences due to general flow features can be understood qualitatively: Model predictions are good in the braids between vortex rings, which are present in the near field of round jets, as the strain rate is extensional and reaction surfaces are isolated. In several other regions, the strain rate is compressive or flame surfaces are folded close together. There, the predictions are poor as the local flow no longer resembles the model flow. Quantitative comparisons showed some discrepancies. A modified, consistent application of the strain-rate solution did not show significant changes in the prediction of mean reaction rate distributions.
Resumo:
The objectives of this paper are to examine the loss of crack tip constraint in dynamically loaded fracture specimens and to assess whether it can lead to enhancement in the fracture toughness at high loading rates which has been observed in several experimental studies. To this end, 2-D plane strain finite element analyses of single edge notched (tension) specimen and three point bend specimen subjected to time varying loads are performed. The material is assumed to obey the small strain J(2) flow theory of plasticity with rate independent behaviour. The results demonstrate that a valid J-Q field exists under dynamic loading irrespective of the crack length and specimen geometry. Further, the constraint parameter Q becomes strongly negative at high loading rates, particularly in deeply cracked specimens. The variation of dynamic fracture toughness K-dc with stress intensity rate K for cleavage cracking is predicted using a simple critical stress criterion. It is found that inertia-driven constraint loss can substantially enhance K-dc for (K) over dot > 10(5) MPa rootm/s.
Resumo:
Pyruvate conversion to acetyl-CoA by the pyruvate dehydrogenase (PDH) multienzyme complex is known as a key node in affecting the metabolic fluxes of animal cell culture. However, its possible role in causing possible nonlinear dynamic behavior such as oscillations and multiplicity of animal cells has received little attention. In this work, the kinetic and dynamic behavior of PDH of eucaryotic cells has been analyzed by using both in vitro and simplified in vivo models. With the in vitro model the overall reaction rate (v(1)) of PDH is shown to be a nonlinear function of pyruvate concentration, leading to oscillations under certain conditions. All enzyme components affect v, and the nonlinearity of PDH significantly, the protein X and the core enzyme dihydrolipoamide acyltransferase (E2) being mostly predominant. By considering the synthesis rates of pyruvate and PDH components the in vitro model is expanded to emulate in vivo conditions. Analysis using the in vivo model reveals another interesting kinetic feature of the PDH system, namely, multiple steady states. Depending on the pyruvate and enzyme levels or the operation mode, either a steady state with high pyruvate decarboxylation rate or a steady state with significantly lower decarboxylation rate can be achieved under otherwise identical conditions. In general, the more efficient steady state is associated with a lower pyruvate concentration. A possible time delay in the substrate supply and enzyme synthesis can also affect the steady state to be achieved and lead's to oscillations under certain conditions. Overall, the predictions of multiplicity for the PDH system agree qualitatively well with recent experimental observations in animal cell cultures. The model analysis gives some hints for improving pyruavte metabolism in animal cell culture.
Resumo:
We study the thermal effects that lead to instability and break up in acoustically levitated vaporizing fuel droplets. For selective liquids, atomization occurs at the droplet equator under external heating. Short wavelength [Kelvin-Helmholtz (KH)] instability for diesel and bio-diesel droplets triggers this secondary atomization. Vapor pressure, latent heat, and specific heat govern the vaporization rate and temperature history, which affect the surface tension gradient and gas phase density, ultimately dictating the onset of KH instability. We develop a criterion based on Weber number to define a condition for the inception of secondary atomization. (C) 2012 American Institute of Physics. [doi:10.1063/1.3680257]
Resumo:
A study is made to bring out the effect of alloying with Cr, Ti or Mn on the creep behaviour of Fe3Al. Impression creep experiments have been carried out in the DO3 phase field. In all the alloys, power law creep behaviour is observed in the stress range covered. The stress exponent for steady state creep rate and the activation energy for creep indicate that the creep rate is controlled by the dislocation climb process. Among the alloying elements studied, addition of Ti is most effective in improving the creep resistance.
Resumo:
In this work, the effects of loading rate, material rate sensitivity and constraint level on quasi-static crack tip fields in a FCC single crystal are studied. Finite element simulations are performed within a mode I, plane strain modified boundary layer framework by prescribing the two term (K-T) elastic crack tip field as remote boundary conditions. The material is assumed to obey a rate-dependent crystal plasticity theory. The orientation of the single crystal is chosen so that the crack surface coincides with the crystallographic (010) plane and the crack front lies along 101] direction. Solutions corresponding to different stress intensity rates K., T-stress values and strain rate exponents m are obtained. The results show that the stress levels ahead of the crack tip increase with K. which is accompanied by gradual shrinking of the plastic zone size. However, the nature of the shear band patterns around the crack tip is not affected by the loading rate. Further, it is found that while positive T-stress enhances the opening and hydrostatic stress levels ahead of crack tip, they are considerably reduced with imposition of negative T-stress. Also, negative T-stress promotes formation of shear bands in the forward sector ahead of the crack tip and suppresses them behind the tip.
Resumo:
An experimental study has been made of the flow field in indentation of a model granular material. A granular ensemble composed of spherical sand particles with average size of 0.4 mm is indented with a flat ended punch under plane-strain conditions. The region around the indenter is imaged in situ using a high-speed charge-coupled device (CCD) imaging system. By applying a hybrid image analysis technique to image sequences of the indentation, flow parameters such as velocity, velocity gradient, and strain rate are measured at high resolution. The measurements have enabled characterization of the main features of the flow such as dead material zones, velocity jumps, localization of deformation, and regions of highly rotational flow resembling vortices. Implications for validation of theoretical analyses and applications are discussed.
Resumo:
We report the first observation and analytical model of deformation and spreading of droplets on a vibrating surface under the influence of an ultrasonic standing pressure field. The standing wave allows the droplet to spread, and the spreading rate varies inversely with viscosity. In low viscosity droplets, the synergistic effect of radial acoustic force and the transducer surface acceleration also leads to capillary waves. These unstable capillary modes grow to cause ultimate disintegration into daughter droplets. We find that using nanosuspensions, spreading and disintegration can be prevented by suppressing the development of capillary modes and subsequent break-up. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4757567]
Resumo:
Hot deformation behavior of a hypoeutectic Ti-6Al-4V-0.1B alloy in (alpha + beta) phase field is investigated in the present study with special reference to flow response, kinetics and microstructural evolution. For a comparison, the base alloy Ti-6Al-4V was also studied under identical conditions. Dynamic recovery of alpha phase occurs at low temperatures while softening due to globularization and/or dynamic recrystallization dominates at high temperatures irrespective of boron addition. Microstructural features for both the alloys display bending and kinking of alpha lamellae for near alpha test temperatures. Unlike Ti-6Al-4V, no sign of instability formation was observed in Ti-6Al-4V-0.1B for any deformation condition except for cavitation around TiB particles, due to deformation incompatibility and strain accumulation at the particle-matrix interface. The absence of macroscopic instabilities and early initiation of softening mechanisms as a result of boron addition has been attributed to microstructural features (e.g. refined prior beta grain and alpha colony size, absence of grain boundary alpha layer, presence of TiB particles at prior beta boundaries, etc.) of the respective alloys prior to deformation. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Motivated by the recent Coherent Space-Time Shift Keying (CSTSK) philosophy, we construct new dispersion matrices for rotationally invariant PSK signaling sets. Given a specific PSK signal constellation, the dispersion matrices of the existing CSTSK scheme were chosen by maximizing the mutual information over randomly generated sets of dispersion matrices. In this contribution we propose a general method for constructing a set of structured dispersion matrices for arbitrary PSK signaling sets using Field Extension (FE) codes and then study the attainable Symbol Error Rate (SER) performance of some example constructions. We demonstrate that the proposed dispersion scheme is capable of outperforming the existing dispersion arrangement at medium to high SNRs.
Resumo:
The way in which basal tractions, associated with mantle convection, couples with the lithosphere is a fundamental problem in geodynamics. A successful lithosphere-mantle coupling model for the Earth will satisfy observations of plate motions, intraplate stresses, and the plate boundary zone deformation. We solve the depth integrated three-dimensional force balance equations in a global finite element model that takes into account effects of both topography and shallow lithosphere structure as well as tractions originating from deeper mantle convection. The contribution from topography and lithosphere structure is estimated by calculating gravitational potential energy differences. The basal tractions are derived from a fully dynamic flow model with both radial and lateral viscosity variations. We simultaneously fit stresses and plate motions in order to delineate a best-fit lithosphere-mantle coupling model. We use both the World Stress Map and the Global Strain Rate Model to constrain the models. We find that a strongly coupled model with a stiff lithosphere and 3-4 orders of lateral viscosity variations in the lithosphere are best able to match the observational constraints. Our predicted deviatoric stresses, which are dominated by contribution from mantle tractions, range between 20-70 MPa. The best-fitting coupled models predict strain rates that are consistent with observations. That is, the intraplate areas are nearly rigid whereas plate boundaries and some other continental deformation zones display high strain rates. Comparison of mantle tractions and surface velocities indicate that in most areas tractions are driving, although in a few regions, including western North America, tractions are resistive. Citation: Ghosh, A., W. E. Holt, and L. M. Wen (2013), Predicting the lithospheric stress field and plate motions by joint modeling of lithosphere and mantle dynamics.