900 resultados para Fígado artificial
Resumo:
In this master’s thesis, wind speeds and directions were modeled with the aim of developing suitable models for hourly, daily, weekly and monthly forecasting. Artificial Neural Networks implemented in MATLAB software were used to perform the forecasts. Three main types of artificial neural network were built, namely: Feed forward neural networks, Jordan Elman neural networks and Cascade forward neural networks. Four sub models of each of these neural networks were also built, corresponding to the four forecast horizons, for both wind speeds and directions. A single neural network topology was used for each of the forecast horizons, regardless of the model type. All the models were then trained with real data of wind speeds and directions collected over a period of two years in the municipal region of Puumala in Finland. Only 70% of the data was used for training, validation and testing of the models, while the second last 15% of the data was presented to the trained models for verification. The model outputs were then compared to the last 15% of the original data, by measuring the mean square errors and sum square errors between them. Based on the results, the feed forward networks returned the lowest generalization errors for hourly, weekly and monthly forecasts of wind speeds; Jordan Elman networks returned the lowest errors when used for forecasting of daily wind speeds. Cascade forward networks gave the lowest errors when used for forecasting daily, weekly and monthly wind directions; Jordan Elman networks returned the lowest errors when used for hourly forecasting. The errors were relatively low during training of the models, but shot up upon simulation with new inputs. In addition, a combination of hyperbolic tangent transfer functions for both hidden and output layers returned better results compared to other combinations of transfer functions. In general, wind speeds were more predictable as compared to wind directions, opening up opportunities for further research into building better models for wind direction forecasting.
Resumo:
Ribonucleic acid (RNA) has many biological roles in cells: it takes part in coding, decoding, regulating and expressing of the genes as well as has the capacity to work as a catalyst in numerous biological reactions. These qualities make RNA an interesting object of various studies. Development of useful tools with which to investigate RNA is a prerequisite for more advanced research in the field. One of such tools may be the artificial ribonucleases, which are oligonucleotide conjugates that sequence-selectively cleave complementary RNA targets. This thesis is aimed at developing new efficient metal-ion-based artificial ribonucleases. On one hand, to solve the challenges related to solid-supported synthesis of metal-ion-binding conjugates of oligonucleotides, and on the other hand, to quantify their ability to cleave various oligoribonucleotide targets in a pre-designed sequence selective manner. In this study several artificial ribonucleases based on cleaving capability of metal ion chelated azacrown moiety were designed and synthesized successfully. The most efficient ribonucleases were the ones with two azacrowns close to the 3´- end of the oligonucleotide strand. Different transition metal ions were introduced into the azacrown moiety and among them, the Zn2+ ion was found to be better than Cu2+ and Ni2+ ions.
Resumo:
O presente estudo tem como objetivo conhecer a composição do fitoplâncton no Lago das Tartarugas, situado no Jardim Botânico da cidade de Porto Alegre, Estado do Rio Grande do Sul. As amostragens foram realizadas mensalmente, no período de junho de 2007 a maio de 2008, em uma estação em três diferentes níveis de profundidade, na zona pelágica. Um total de 49 táxons específicos e infraespecíficos pertencentes a sete classes foram registrados. Cyanobacteria apresentou maior número de táxons (35% dos táxons identificados) seguida de Bacillariophyceae (33%) e Euglenophyceae (16,3%). São apresentadas descrições, medidas e ilustrações dos táxons, assim como a distribuição dos mesmos durante o ciclo anual.
Resumo:
Os criatórios de peixe do estado de Goiás são inúmeros e de intensa atividade recreativa. No entanto, estudos sobre as cianobactérias nesses ambientes são escassos, fato preocupante, uma vez que é comum notar-se intensa proliferação do fitoplâncton em pesqueiros, principalmente devido a ações antrópicas. O perigo consiste na formação de florações de espécies potencialmente tóxicas, principalmente de cianobactérias. Este trabalho visa inventariar as espécies planctônicas de cianobactérias ocorrentes em um pesqueiro (lago Jaó - um lago artificial raso) da área municipal de Goiânia (GO) (16º39'13" S-49º13'26" O). As amostragens foram realizadas nos períodos de seca (2003 a 2008) e chuva (2009), quando visualmente era evidente a ocorrência de florações. Foram aferidas variáveis climatológicas, morfométricas e limnológicas. O período de seca foi representativo nos anos amostrados apresentando no máximo 50 mm de precipitação mensal em 2005. Foram registrados 31 táxons de cianobactérias pertencentes aos gêneros Dolichospermum (5 spp.), Aphanocapsa (4 spp.), Microcystis (3 spp.), Pseudanabaena (3 spp.), Radiocystis (2 spp.), Oscillatoria (2 spp.), Bacularia, Coelosphaerium, Cylindrospermopsis, Geitlerinema, Glaucospira, Limnothrix, Pannus, Phormidium, Planktolyngbya, Planktothrix, Sphaerocavum e Synechocystis, esses últimos com uma espécie cada. Nos anos de 2003 a 2005 ocorreu predomínio de florações de espécies de Dolichospermum e em 2006 predominaram espécies de Microcystis, Radiocystis e Aphanocapsa. Das espécies inventariadas neste estudo, 21 são primeiras citações para o estado de Goiás e 13 foram constadas na literatura como potencialmente tóxicas.
Resumo:
Induced mutations by gamma radiation (0, 5, 10, 20 and 40 kR doses) and reciprocal crosses were tested as mechanisms of enhancing genetic variability for plant height in two triticale cultivars, BR4 and EMBRAPA18. The reciprocal crosses and all doses of radiation showed similar increase in genetic amplitude for this trait, being suitable for increasing variability in breeding programs. Genotypes showed different responses as the gamma ray doses were increased, expressing shorter plant height. The decision of using induced mutations or artificial crosses depends on the resources available and the selection method to be used
Resumo:
The present study describes an auxiliary tool in the diagnosis of left ventricular (LV) segmental wall motion (WM) abnormalities based on color-coded echocardiographic WM images. An artificial neural network (ANN) was developed and validated for grading LV segmental WM using data from color kinesis (CK) images, a technique developed to display the timing and magnitude of global and regional WM in real time. We evaluated 21 normal subjects and 20 patients with LVWM abnormalities revealed by two-dimensional echocardiography. CK images were obtained in two sets of viewing planes. A method was developed to analyze CK images, providing quantitation of fractional area change in each of the 16 LV segments. Two experienced observers analyzed LVWM from two-dimensional images and scored them as: 1) normal, 2) mild hypokinesia, 3) moderate hypokinesia, 4) severe hypokinesia, 5) akinesia, and 6) dyskinesia. Based on expert analysis of 10 normal subjects and 10 patients, we trained a multilayer perceptron ANN using a back-propagation algorithm to provide automated grading of LVWM, and this ANN was then tested in the remaining subjects. Excellent concordance between expert and ANN analysis was shown by ROC curve analysis, with measured area under the curve of 0.975. An excellent correlation was also obtained for global LV segmental WM index by expert and ANN analysis (R² = 0.99). In conclusion, ANN showed high accuracy for automated semi-quantitative grading of WM based on CK images. This technique can be an important aid, improving diagnostic accuracy and reducing inter-observer variability in scoring segmental LVWM.
Resumo:
This thesis studies metamaterial-inspired mirrors which provide the most general control over the amplitude and phase of the reflected wavefront. The goal is to explore practical possibilities in designing fully reflective electromagnetic structures with full control over reflection phase. The first part of the thesis describes a planar focusing metamirror with the focal distance less than the operating wavelength. Its practical applicability from the viewpoint of aberrations when the incident angle deviates from the normal one is verified numerically and experimentally. The results indicate that the proposed focusing metamirror can be efficiently employed in many different applications due to its advantages over other conventional mirrors. In the second part of the thesis a new theoretical concept of reflecting metasurface operation is introduced based on Huygens’ principle. This concept in contrast to known approaches takes into account all the requirements of perfect metamirror operation. The theory shows a route to improve the previously proposed metamirrors through tilting the individual inclusions of the structure at a chosen angle from normal. It is numerically tested and the results demonstrate improvements over the previous design.
Resumo:
In the present study, we modeled a reaching task as a two-link mechanism. The upper arm and forearm motion trajectories during vertical arm movements were estimated from the measured angular accelerations with dual-axis accelerometers. A data set of reaching synergies from able-bodied individuals was used to train a radial basis function artificial neural network with upper arm/forearm tangential angular accelerations. The trained radial basis function artificial neural network for the specific movements predicted forearm motion from new upper arm trajectories with high correlation (mean, 0.9149-0.941). For all other movements, prediction was low (range, 0.0316-0.8302). Results suggest that the proposed algorithm is successful in generalization over similar motions and subjects. Such networks may be used as a high-level controller that could predict forearm kinematics from voluntary movements of the upper arm. This methodology is suitable for restoring the upper limb functions of individuals with motor disabilities of the forearm, but not of the upper arm. The developed control paradigm is applicable to upper-limb orthotic systems employing functional electrical stimulation. The proposed approach is of great significance particularly for humans with spinal cord injuries in a free-living environment. The implication of a measurement system with dual-axis accelerometers, developed for this study, is further seen in the evaluation of movement during the course of rehabilitation. For this purpose, training-related changes in synergies apparent from movement kinematics during rehabilitation would characterize the extent and the course of recovery. As such, a simple system using this methodology is of particular importance for stroke patients. The results underlie the important issue of upper-limb coordination.
Resumo:
The mortality rate of older patients with intertrochanteric fractures has been increasing with the aging of populations in China. The purpose of this study was: 1) to develop an artificial neural network (ANN) using clinical information to predict the 1-year mortality of elderly patients with intertrochanteric fractures, and 2) to compare the ANN's predictive ability with that of logistic regression models. The ANN model was tested against actual outcomes of an intertrochanteric femoral fracture database in China. The ANN model was generated with eight clinical inputs and a single output. ANN's performance was compared with a logistic regression model created with the same inputs in terms of accuracy, sensitivity, specificity, and discriminability. The study population was composed of 2150 patients (679 males and 1471 females): 1432 in the training group and 718 new patients in the testing group. The ANN model that had eight neurons in the hidden layer had the highest accuracies among the four ANN models: 92.46 and 85.79% in both training and testing datasets, respectively. The areas under the receiver operating characteristic curves of the automatically selected ANN model for both datasets were 0.901 (95%CI=0.814-0.988) and 0.869 (95%CI=0.748-0.990), higher than the 0.745 (95%CI=0.612-0.879) and 0.728 (95%CI=0.595-0.862) of the logistic regression model. The ANN model can be used for predicting 1-year mortality in elderly patients with intertrochanteric fractures. It outperformed a logistic regression on multiple performance measures when given the same variables.
Resumo:
This work presents the results of a Hybrid Neural Network (HNN) technique as applied to modeling SCFE curves obtained from two Brazilian vegetable matrices. A series Hybrid Neural Network was employed to estimate the parameters of the phenomenological model. A small set of SCFE data of each vegetable was used to generate an extended data set, sufficient to train the network. Afterwards, other sets of experimental data, not used in the network training, were used to validate the present approach. The series HNN correlates well the experimental data and it is shown that the predictions accomplished with this technique may be promising for SCFE purposes.
Resumo:
O uso de substâncias anabolizantes, de natureza hormonal ou não, é muito difundida na pecuária de corte dos países maiores produtores de carne bovina (EUA, Austrália, Argentina, Canadá, etc.). Dentre estas destacam-se o banido dietilestilbestrol (DES) e o controlado zeranol, que aumentam o ganho de peso vivo, o peso da carcaça, a eficiência alimentar e o percentual de carne. O uso porém, pode ocasionar a presença de resíduos nos tecidos e órgãos dos animais que são utilizados como alimento. A presença de resíduos representa um perigo potencial para a saúde humana, o que levou vários países, inclusive o Brasil, a proibirem a utilização destes produtos. O objetivo do presente trabalho foi o de verificar, se a carne colhida no período de julho de 1993 a novembro de 1994, em matadouros frigoríficos pertencentes a Lista Geral dos Exportadores, atende a legislação vigente quanto ao uso destes anabolizantes. Para isto, foram analisadas por radioimunoensaio, 416 amostras de fígado para pesquisa de DES e 385 para zeranol. Observou-se que o DES não foi detectado em nenhuma das amostras (p > 0,05), enquanto que o zeranol foi detectado em duas (p < 0,05). A presença do zeranol nestas amostras foi confirmada por cromatografia gasosa acoplada a espectrometria de massa (p < 0,05). A recuperação média obtida na fase extrativa (³H-DES) foi de 62,6 ± 5,7% , enquanto que na fase extrativa + radioimunoensaio (DES), esta recuperação foi de 83,8 ± 16,8%. Quanto ao zeranol as recuperações médias obtidas foram de 63,0 ± 5,8% na fase extrativa (³H-zeranol) e 94,8 ± 13,8% na fase extrativa + radioimunoensaio (zeranol). Concluiu-se portanto, que a carne bovina brasileira atende a legislação vigente quanto a ausência de resíduos de DES, no entanto, contraria quanto ao zeranol, pois foi confirmada uma freqüência de 0,52% de amostras positivas.
Resumo:
Redes Neurais Artificiais são técnicas computacionais que se utilizam de um modelo matemático capaz de adquirir conhecimentos pela experiência; esse comportamento inteligente da rede provém das interações entre unidades de processamento, denominadas de neurônios artificiais. O objetivo deste trabalho foi criar uma rede neural capaz de prever a estabilidade de óleos vegetais, a partir de dados de suas composições químicas, visando um modelo para a previsão da shelf-life de óleos vegetais, tendo como parâmetros apenas dados de suas composições químicas. Os primeiros passos do processo de desenvolvimento da rede consistiram na coleta de dados relativos ao problema e sua separação em um conjunto de treinamento e outro de testes. Estes conjuntos apresentaram como variáveis dados de composição química, que incluíram os valores totais em ácidos graxos, fenóis, tocoferóis e a composição individual em ácidos graxos. O passo seguinte foi a execução do treinamento, onde o padrão de entrada apresentado à rede como parâmetro de estabilidade foi o índice de peróxido, determinado experimentalmente por um período de 16 dias de armazenagem na ausência de luz, a 65ºC. Após o treinamento foi testada a capacidade de previsão adquirida pela rede, em função do parâmetro de estabilidade adotado, mas com um novo grupo de óleos. Seguindo o teste, foi determinada a correlação linear entre os valores de estabilidade previstos pela rede e aqueles determinados experimentalmente. Com os resultados obtidos, pode-se confirmar a viabilidade de previsão da estabilidade de óleos vegetais pela rede neural, a partir de dados de sua composição química, utilizando como parâmetro de estabilidade o índice de peróxido.
Resumo:
Foi padronizado e validado um método analítico para determinação de resíduos de abamectin, doramectin e ivermectin em fígado bovino empregando extração com acetonitrila, purificação com cartucho de C18 , derivatização, detecção e quantificação por CLAE/FL. Nos ensaios com amostras adicionadas de solução padrão em níveis entre 5 e 100mg/kg as recuperações médias obtidas variaram de 69,0 a 101,4% com valores de coeficiente de variação entre 5,5 e 28,1%. O limite de detecção e quantificação do método, para os três resíduos estudados, foi 5µg/kg.
Resumo:
Alimentos contendo probióticos são conhecidos como funcionais e têm sido recomendados para indivíduos com hipercolesterolemia. Com o objetivo de avaliar seu efeito na modulação dos níveis de colesterol sérico, foi conduzido um estudo de 28 dias, utilizando-se 90 ratos machos Wistar, distribuídos entre os tratamentos: Padrão, com 30 animais e Controle, LDR (Leite Desnatado Reconstituído) e P (Probiótico), com 20 animais cada. O grupo Padrão recebeu a dieta AIN-93G durante todo o período experimental. Os demais grupos receberam a mesma dieta acrescida de 1% de colesterol e 0,1% de ácido cólico. Do 15º ao 28º dia, o grupo LDR recebeu 0,1mL/dia/animal de leite desnatado reconstituído a 10% de sólidos não gordurosos e o grupo P, recebeu 0,1mL/dia/animal de probiótico contendo 10(10) UFC/mL de Lactobacillus acidophilus NCFM. Avaliou-se o colesterol total, LDL-colesterol e HDL-colesterol e o peso do fígado, imediatamente após o término da administração do probiótico, onde os ratos tiveram o fígado retirado e o sangue coletado por punção cardíaca. A adição de colesterol e ácido cólico à dieta não elevou (p>0,05) os níveis de colesterol do grupo Controle, LDR e P em relação ao grupo Padrão, no entanto, promoveu aumento significativo de peso (p<0,05) do fígado e alteração da coloração normal do mesmo (de vermelho vivo para vermelho pálido) devido à deposição de gordura neste órgão. Assim, a dieta rica em colesterol e ácido cólico não promoveu hipercolesterolemia nos animais, mas induziu fígado gorduroso nos mesmos. Em conseqüência, o consumo de L. acidophilus não alterou (p>0,05) os níveis de colesterol sérico dos animais, uma vez que estes níveis se mantiveram normais durante todo o período experimental. Observou-se também que a administração de probiótico não impediu o acúmulo de gordura no fígado dos animais que receberam dieta rica em colesterol e ácido cólico.