992 resultados para Exposure history


Relevância:

20.00% 20.00%

Publicador:

Resumo:

On return from duty in North Solomons Province (including Bougainville Island), Papua New Guinea, 586 Australian Defence Force personnel received either primaquine (14-d) or tafenoquine (3-d) post-exposure malaria prophylaxis. Within 12 months, 6 of the 214 volunteers receiving primaquine and 7 of 378 receiving tafenoquine had developed vivax malaria. Overall, volunteers preferred the shorter course of tafenoquine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laboratory toxicity studies were conducted in southeastern Queensland, Australia, to determine the acute lethal effects of a 1-h pulse exposure of selected insecticides to adult and juvenile (

Relevância:

20.00% 20.00%

Publicador:

Resumo:

What causes species richness to vary among different groups of organisms? Two hypotheses are that large geographical ranges and fast life history either reduce extinction rates or raise speciation rates, elevating a clade's rate of diversification. Here we present a comparative analysis of these hypotheses using data on the phylogenetic relationships, geographical ranges and life history of the terrestrial mammal fauna of Australia. By comparing species richness patterns to null models, we show that species are distributed nonrandomly among genera. Using sister-clade comparisons to control for clade age, we then find that faster diversification is significantly associated with larger geographical ranges and larger litters, but there is no evidence for an effect of body size or age at first breeding on diversification rates. We believe the most likely explanation for these patterns is that larger litters and geographical ranges increase diversification rates because they buffer species from extinction. We also discuss the possibility that positive effects of litter size and range size on diversification rates result from elevated speciation rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Some melanomas form on sun-exposed body sites, whereas others do not. We previously proposed that melanomas at different body sites arise through different pathways that have different associations with melanocytic nevi and solar keratoses. We tested this hypothesis in a case-case comparative study of melanoma patients in Queensland, Australia. Methods: We randomly selected patients from among three prespecified groups reported to the population-based Queensland Cancer Registry: those with superficial spreading or nodular melanomas of the trunk (n = 154, the reference group), those with such melanomas of the head and neck (n = 77, the main comparison group), and those with lentigo maligna melanoma (LMM) (n = 75, the chronic sun-exposed group). Each participant completed a questionnaire, and a research nurse counted melanocytic nevi and solar keratoses. We calculated exposure odds ratios (ORs) and 95% confidence intervals (CIs) to quantify the association between factors of interest and each melanoma group. Results: Patients with head and neck melanomas, compared with patients with melanomas of the trunk, were statistically significantly less likely to have more than 60 nevi (OR = 0.34, 95% CI = 0.15 to 0.79) but were statistically significantly more likely to have more than 20 solar keratoses (OR = 3.61, 95% CI = 1.42 to 9.17) and also tended to have a past history of excised solar skin lesions (OR = 1.87, 95% CI = 0.89 to 3.92). Patients with LMM were also less likely than patients with truncal melanomas to have more than 60 nevi (OR = 0.32, 95% CI = 0.14 to 0.75) and tended toward more solar keratoses (OR = 2.14, 95% CI = 0.88 to 5.16). Conclusions: Prevalences of nevi and solar keratoses differ markedly between patients with head and neck melanomas or LMM and patients with melanomas of the trunk. Cutaneous melanomas may arise through two pathways, one associated with melanocyte proliferation and the other with chronic exposure to sunlight.