966 resultados para Experimental medicine
Resumo:
The aim of this study is to evaluate the oral colonization by Candida albicans in experimental murine immunosuppressed DBA/2 and treatment with probiotic bacteria. To achieve these objectives, 152 DBA/2-immunosuppressed mice were orally inoculated with a suspension of C. albicans containing 10(8) viable yeast cells, the animals were treated with nystatin or with the probiotics (Lactobacillus acidophilus and Lactobacillus rhamnosus). Evaluations were performed by Candida count from oral mucosa swabbing. The oral mucosa colonization by C. albicans started at day 1 after inoculation, remained maximal from day 3 until day 7, and then decreased significantly. Probiotics reduced the C. albicans colonization significantly on the oral mucosa in comparison with the untreated animal group. In the group treated with L. rhamnosus, the reduction in yeast colonization was significantly higher compared with that of the group receiving nystatin. Immunosuppressed animal model DBA/2 is a relevant model for experimental Candida oral colonization, and the treatment with probiotics in this model may be an effective alternative to prevent it. Oral Diseases (2012) 18, 260-264
Resumo:
Objectives: We tested the effects of liver reperfusion in the immunohistochemical expression of nitric oxide synthase on the thoracic aorta and the heart. Materials and Methods: We randomized 24 male Wistar rats into 3 groups: (1) control; (2) R2 group, with 60 minutes of partial (70%) liver ischemia and 2 hours of global liver reperfusion; (3) and R6 group, with 60 minutes of partial liver ischemia and 6 hours of global liver reperfusion. Results: In the heart, there was little, diffuse immunohistochemical endothelial staining; immunohistochemical inducible nitric oxide synthase staining was expressed in the adventitia layer of intramyocardial vessels in both cases, with a time-dependent but not statistically significant increase. In the thoracic aorta, a time-dependent decrease in endothelial nitric oxide synthase expression in the muscular layer after reperfusion, which was statistically significant in R6 versus the control. Positive immunostaining for inducible nitric oxide synthase was seen in the muscular and endothelial layers, and this varied from moderate in the control group, to light in the endothelium in groups R2 and R6. Conclusions: We observed changes that may be implicated in heart injury and impairment of aortal tone after liver ischemia and reperfusion injury.
Resumo:
The need to develop new dental luting agents in order to improve the success of treatments has greatly motivated research. Objective: The aim of this study was to evaluate the diametral tensile strength (DTS) and film thickness (FT) of an experimental dental luting agent derived from castor oil (COP) with or without addition of different quantities of filler (calcium carbonate - CaCO3). Material and Methods: Eighty specimens were manufactured (DTS N=40; FT N=40) and divided into 4 groups: Pure COP; COP 10%; COP 50% and zinc phosphate (control). The cements were mixed according to the manufacturers' recommendations and submitted to the tests. The DTS test was performed in the MTS 810 testing machine (10 KN, 0.5 mm/min). For FT test, the cements were sandwiched between two glass plates (2 cm(2)) and a load of 15 kg was applied vertically on the top of the specimen for 10 min. The data were analyzed by means of one-way ANOVA and Tukey's test (alpha=0.05). Results: The values of DTS (MPa) were: Pure COP- 10.94 +/- 1.30; COP 10%- 30.06 +/- 0.64; COP 50%- 29.87 +/- 0.27; zinc phosphate- 4.88 +/- 0.96. The values of FT (pm) were: Pure COP- 31.09 +/- 3.16; COP 10%- 17.05 +/- 4.83; COP 50%- 13.03 +/- 4.83; Zinc Phosphate- 20.00 +/- 0.12. One-way ANOVA showed statistically significant differences among the groups (DTS - p=1.01E-40; FT - p=2.4E-10). Conclusion: The experimental dental luting agent with 50% of filler showed the best diametral tensile strength and film thickness.
Resumo:
The aim of this study was to evaluate extracellular matrix components in articular cartilage, ligaments and synovia in an experimental model of diabetes. Young Wistar rats were divided into a streptozotocin-induced (STZ; 35 mg/kg) diabetic group (DG; n=15) and a control group (CG; n=15). Weight, blood glucose and plasma anti-carboxymethyllysine were measured 70 days after STZ infusions. Knee joints, patellar ligaments, and lateral and medial collateral ligaments were isolated and stained with hematoxylineosin and Picrosirius. The total collagen content was determined by morphometry. Immunofluorescence was employed to evaluate types I, III, and V collagen in ligaments and synovial tissues and types II and XI collagen in cartilage. Results: Higher blood glucose levels and plasma anti-carboxymethyllysine were observed in DG rats when compared to those in CG rats. The final weight was significantly lower in the DG rats than in the CG rats. Histomorphometric evaluation depicted a small quantity of collagen fibers in ligaments and articular cartilage in DG rats, as well as increased collagen in synovial tissue. There was a decrease in cartilage proteoglycans in DG rats when compared with CG rats. Immunofluorescence staining revealed an increase of collagen III and V in ligaments, collagen XI in cartilage, and collagen I in synovial tissue of DG rats compared with CG rats. Conclusion: The ligaments, cartilage and synovia are highly affected following STZ-induced diabetes in rats, due the remodeling of collagen types in these tissues. This process may promote the degradation of the extracellular matrix, thus compromising joint function. Our data may help to better understand the pathogenesis of joint involvement related to diabetes.
Resumo:
Pneumococcal meningitis causes apoptosis of developing neurons in the dentate gyrus of the hippocampus. The death of these cells is accompanied with long-term learning and memory deficits in meningitis survivors. Here, we studied the role of the PI3K/Akt (protein kinase B) survival pathway in hippocampal apoptosis in a well-characterized infant rat model of pneumococcal meningitis. Meningitis was accompanied by a significant decrease of the PI3K product phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) and of phosphorylated (i.e., activated) Akt in the hippocampus. At the cellular level, phosphorylated Akt was decreased in both the granular layer and the subgranular zone of the dentate gyrus, the region where the developing neurons undergo apoptosis. Protein levels and activity of PTEN, the major antagonist of PI3K, were unaltered by infection, suggesting that the observed decrease in PIP(3) and Akt phosphorylation is a result of decreased PI3K signaling. Treatment with the PTEN inhibitor bpV(pic) restored Akt activity and significantly attenuated hippocampal apoptosis. Co-treatment with the specific PI3K inhibitor LY294002 reversed the restoration of Akt activity and attenuation of hippocampal apoptosis, while it had no significant effect on these parameters on its own. These results indicate that the inhibitory effect of bpV(pic) on apoptosis was mediated by PI3K-dependent activation of Akt, strongly suggesting that bpV(pic) acted on PTEN. Treatment with bpV(pic) also partially inhibited the concentration of bacteria and cytokines in the CSF, but this effect was not reversed by LY294002, indicating that the effect of bpV(pic) on apoptosis was independent of its effect on CSF bacterial burden and cytokine levels. These results indicate that the PI3K/Akt pathway plays an important role in the death and survival of developing hippocampal neurons during the acute phase of pneumococcal meningitis.
Resumo:
Apart from one article published by Rabl and Sigrist in 1992 (Rechtsmedizin 2:156-158), there are no further reports on secondary skull fractures in shots from captive bolt guns. Up to now, the pertinent literature places particular emphasis on the absence of indirect lesions away from the impact point, when dealing with the wounding capacity of slaughterer's guns. The recent observation of two suicidal head injuries accompanied by skull fractures far away from the bolt's path gave occasion to experimental studies using simulants (glycerin soap, balls from gelatin) and skull brain models. As far as ballistic soap was concerned, the dimensions of the bolt's channel were assessed by multi-slice computed tomography before cutting the blocks open. The test shots to gelatin balls and to skull-brain models were documented by means of a high-speed motion camera. As expected, the typical temporary cavity effect of bullets fired from conventional guns could not be observed when captive bolt stunners were discharged. Nevertheless, the visualized transfer of kinetic energy justifies the assumption that the secondary fractures seen in thin parts of the skull were caused by a hydraulic burst effect.
Resumo:
Background: Distraction of the periosteum results in the formation of new bone in the gap between the periosteum and the original bone. We postulate that the use of a barrier membrane would be beneficial for new bone formation in periosteal distraction. Methods: To selectively influence the contribution of the periosteum, a distraction plate with perforations was used alone or covered by a collagen barrier membrane. All animals were subjected to a 7-day latency period and a 10-day distraction period with a rate of 0.1 mm/day. Four animals per group with or without a barrier membrane were sacrificed at 2, 4, and 6 weeks after the end of the distraction. The height of new bone generated relative to the areas bound by the parent bone and the periosteum was determined by histomorphometric methods. Results: New bone was found in all groups. At the periphery of the distraction plate, significant differences in bone height were found between the hinge and the distraction screw for the group without barrier membrane at 2 weeks (0.39 ± 0.19 mm) compared to 4 weeks (0.84 ± 0.44 mm; P = 0.002) and 6 weeks (1.06 ± 0.39 mm; P = 0.004). Differences in maximum bone height with and without a barrier membrane were observed laterally to the distraction plate at 2 weeks (1.22 ± 0.64 versus 0.55 ± 0.14 mm; P = 0.019) and 6 weeks (1.61 ± 0.56 versus 0.73 ± 0.33 mm; P = 0.003) of the consolidation period. Conclusion: Within the limitations of the present study, the application of a barrier membrane may be considered beneficial for new bone formation induced by periosteal distraction.
Resumo:
PURPOSE: This pilot study evaluated the wound healing and tissue response after placement of two different skin substitutes in subgingival mucosal pouches in rabbits. MATERIALS AND METHODS: Four rabbits were selected to receive a commercially available skin substitute consisting of a collagen matrix with fibroblasts and an epithelial layer (test membrane 1) and a prototype device consisting of a collagen matrix with fibroblasts only (test membrane 2). In each rabbit, two horizontal incisions were made in the buccal alveolar mucosa of the maxilla bilaterally to create submucosal pouches. Three pouches in each animal were filled with either the test 1 or test 2 membranes, and one pouch was left without a membrane (sham-operated control). All rabbits were sacrificed after a healing period of 4 weeks, and histologic samples were prepared and examined. RESULTS: After a healing period of 1 month, both tested membranes were still visible in the sections. Test membrane 1 was still bilayered, contained inflammatory cells in its center, and was encapsulated by a thick fibrous tissue. Numerous ectopic calcifications were evident in the collagenous part of the membrane and in association with some basal epithelial cells. Test membrane 2 was also encapsulated in fibrous tissue, with inflammatory cells present only between the fibrous encapsulation and the remnants of the membrane. For test membrane 2, no calcifications were visible. CONCLUSIONS: Test membrane 1 seemed to be more resistant to degradation, but there was also a more pronounced inflammatory reaction in comparison to test membrane 2, especially in the vicinity of the keratinocytes. The significance of the ectopic calcifications, along with that of the resorption or degradation processes of both tested membranes, must be evaluated in future experimental studies, with different time points after implantation examine
Resumo:
Previous experimental studies have indicated that locally administered enamel matrix derivative (EMD) and parathyroid hormone (PTH) may have a stimulatory effect on bone formation. However, it is not clear if the positive effect of EMD is related to its effect on the periodontium as a whole or directly on the bone-forming cells. In addition, it is not known if the presentation of PTH by adding the amino acid sequence Arg-Gly-Asp (RGD) is essential for its osteopromotive effect. Local delivery of a bioactive substance at the right time and in the right concentration often constitutes a major challenge. Polyethylene glycol-based hydrogel (PEG) is a degradable vehicle developed for delivery of bioactive proteins. To enhance the mechanical stability of the PEG-bioactive substance complex, an osteoconductive bone substitute material is often needed.
Resumo:
Estrogen treatment exerts a protective effect on experimental autoimmune encephalomyelitis (EAE) and is under clinical trial for multiple sclerosis therapy. Estrogens have been suspected to protect from CNS autoimmunity through their capacity to exert anti-inflammatory as well as neuroprotective effects. Despite the obvious impacts of estrogens on the pathophysiology of multiple sclerosis and EAE, the dominant cellular target that orchestrates the anti-inflammatory effect of 17β-estradiol (E2) in EAE is still ill defined. Using conditional estrogen receptor (ER) α-deficient mice and bone marrow chimera experiments, we show that expression of ERα is critical in hematopoietic cells but not in endothelial ones to mediate the E2 inhibitory effect on Th1 and Th17 cell priming, resulting in EAE protection. Furthermore, using newly created cell type-specific ERα-deficient mice, we demonstrate that ERα is required in T lymphocytes, but neither in macrophages nor dendritic cells, for E2-mediated inhibition of Th1/Th17 cell differentiation and protection from EAE. Lastly, in absence of ERα in host nonhematopoietic tissues, we further show that ERα signaling in T cells is necessary and sufficient to mediate the inhibitory effect of E2 on EAE development. These data uncover T lymphocytes as a major and nonredundant cellular target responsible for the anti-inflammatory effects of E2 in Th17 cell-driven CNS autoimmunity.
Resumo:
Although manual and electrical stimulation are frequently used in acupuncture analgesia, studies comparing both stimulation modalities are contradictory. This blinded, placebo-controlled cross-over study investigates effects of brief manual and electrical acupuncture stimulation on pressure pain detection thresholds (PPDT) compared with nonpenetrating sham acupuncture (NPSA).
Resumo:
For embolized cerebral aneurysms, the initial occlusion rate is the most powerful parameter to predict aneurysm rerupture and recanalization. However, the occlusion rate is only estimated subjectively in clinical routine. To minimize subjective bias, computer occlusion-rating (COR) was successfully validated for 2D images. To minimize the remaining inaccuracy of 2D-COR, COR was applied to 1.5T 3D MR imaging.
Resumo:
BACKGROUND AND PURPOSE: Currently, several new stent retriever devices for acute stroke treatment are under development and early clinical evaluation. Preclinical testing under standardized conditions is an important first step to evaluate the technical performance and potential of these devices. The aim of this study was to evaluate the immediate recanalization effect, recanalization efficacy, thrombus-device interaction, and safety of a new stent retriever intended for thrombectomy in patients with acute stroke. MATERIAL AND METHODS: The pREset thrombectomy device (4 × 20 mm) was evaluated in 16 vessel occlusions in an established swine model. Radiopaque thrombi (10-mm length) were used for visualization of thrombus-device interaction during application and retrieval. Flow-restoration effect immediately after deployment and after 5-minute embedding time before retrieval, recanalization rate after retrieval, thromboembolic events, and complications were assessed. High-resolution FPCT was performed to illustrate thrombus-device interaction during the embedding time. RESULTS: Immediate flow restoration was achieved in 75% of occlusions. An increase or stable percentage of recanalizations during embedding time before retrieval was seen in 56.3%; a decrease, in 12.5%; reocclusion of a previously recanalized vessel, in 18.8%; and no recanalization effect at all, in 12.5%. Complete recanalization (TICI 3) after retrieval was achieved in 93.8%; partial recanalization (TICI 2b), in 6.2%. No distal thromboembolic events were observed. High-resolution FPCT illustrated entrapment of the thrombus between the stent struts and compression against the contralateral vessel wall, leading to partial flow restoration. During retrieval, the thrombus was retained in a straight position within the stent struts. CONCLUSIONS: In this experimental study, the pREset thrombus retriever showed a high recanalization rate in vivo. High-resolution FPCT allows detailed illustration of the thrombus-device interaction during embedding time and is advocated as an add-on tool to the animal model used in this study.
Resumo:
Over the last decades, considerable efforts have been undertaken in the development of animal models mimicking the pathogenesis of allergic diseases occurring in humans. The mouse has rapidly emerged as the animal model of choice, due to considerations of handling and costs and, importantly, due to the availability of a large and increasing arsenal of genetically modified mouse strains and molecular tools facilitating the analysis of complex disease models. Here, we review latest developments in allergy research that have arisen from in vivo experimentation in the mouse, with a focus on models of food allergy and allergic asthma, which constitute major health problems with increasing incidence in industrialized countries. We highlight recent novel findings and controversies in the field, most of which were obtained through the use of gene-deficient or germ-free mice, and discuss new potential therapeutic approaches that have emerged from animal studies and that aim at attenuating allergic reactions in human patients.