923 resultados para Exogenous mechanisms
Resumo:
Introduction : Les particules de HDL (High Density Lipoprotein) ont des fonctions diverses notamment en raison de leur structure très hétérogène. Tout d'abord, les HDLs assurent le transport du cholestérol de la périphérie vers le foie mais sont également dotées de nombreuses vertus protectrices. Un grand nombre d'études démontre les mécanismes de protection des HDL sur les cellules endothéliales. Sachant que les patients diabétiques ont ses niveaux bas de HDL, le but de cette étude est d'investiguer les mécanismes moléculaires de protection sur la cellule beta pancréatique. Résultats : Une étude « microarray » nous a permis d'obtenir une liste de gènes régulés par le stress, comme la privation de sérum, en présence ou en absence de HDL. Parmi ces gènes, nous nous sommes particulièrement intéressés à un répresseur de la synthèse protéique « cap » -dépendante, 4EBP1. Dans notre étude transcriptomique, les niveaux d'ARNm de 4E-BP1 augmentaient de 30þ% dans des conditions sans sérum alors que les HDLs bloquaient cette élévation. Au niveau protéique, les niveaux totaux de 4EBP1 étaient augmentés dans les conditions de stress et cette élévation était contrée par les HDLs. D'autres expériences de transfection ou d'infection de 4E-BP1 ont montrés que cette protéine était capable d'induire l'apoptose dans les cellules beta, imitant ainsi l'effet de la privation de sérum. Afin de déterminer le rôle direct de 4E-BP1 dans la mort cellulaire, ses niveaux ont été réduits par interférence ARN. Le niveau de mort cellulaire induit par l'absence de sérum était moins élevé dans des cellules à taux réduits de 4EBP1 par RNAi que dans des cellules contrôle. Conclusion : Ces données montrent que les HDL protègent les cellules beta suite à différents stress et que 4E-BP1 est une des protéines pro-apoptotiques inhibées par les HDL. 4E-BP1 est capable d'induire la mort cellulaire dans les cellules bêta et cette réponse peut-être réduite en diminuant l'expression de cette protéine. Nos données suggèrent que 4E-BP1 est une cible potentielle pour le traitement du diabète.
Resumo:
Chemosensory receptors convert an enormous diversity of chemical signals from the external world into a common language of electrical activity in the brain. Mammals and insects use several families of transmembrane receptor proteins to recognize distinct classes of volatile and non-volatile chemicals that are produced by conspecifics or other environmental sources. A comparison of the signalling mechanisms of mammalian and insect receptors has revealed an unexpected functional distinction: mammals rely almost exclusively on metabotropic ligand-binding receptors, which use second messenger signalling cascades to indirectly activate ion channels, whereas insects use ionotropic receptors, which are gated directly by chemical stimuli, thereby leading to neuronal depolarization. In this review, we consider possible reasons for this dichotomy, taking into account biophysical, cell biological, ecological and evolutionary influences on how information is extracted from chemosensory cues by these animal classes.
Resumo:
Principal mechanisms of resistance to azole antifungals include the upregulation of multidrug transporters and the modification of the target enzyme, a cytochrome P450 (Erg11) involved in the 14alpha-demethylation of ergosterol. These mechanisms are often combined in azole-resistant Candida albicans isolates recovered from patients. However, the precise contributions of individual mechanisms to C. albicans resistance to specific azoles have been difficult to establish because of the technical difficulties in the genetic manipulation of this diploid species. Recent advances have made genetic manipulations easier, and we therefore undertook the genetic dissection of resistance mechanisms in an azole-resistant clinical isolate. This isolate (DSY296) upregulates the multidrug transporter genes CDR1 and CDR2 and has acquired a G464S substitution in both ERG11 alleles. In DSY296, inactivation of TAC1, a transcription factor containing a gain-of-function mutation, followed by sequential replacement of ERG11 mutant alleles with wild-type alleles, restored azole susceptibility to the levels measured for a parent azole-susceptible isolate (DSY294). These sequential genetic manipulations not only demonstrated that these two resistance mechanisms were those responsible for the development of resistance in DSY296 but also indicated that the quantitative level of resistance as measured in vitro by MIC determinations was a function of the number of genetic resistance mechanisms operating in any strain. The engineered strains were also tested for their responses to fluconazole treatment in a novel 3-day model of invasive C. albicans infection of mice. Fifty percent effective doses (ED(50)s) of fluconazole were highest for DSY296 and decreased proportionally with the sequential removal of each resistance mechanism. However, while the fold differences in ED(50) were proportional to the fold differences in MICs, their magnitude was lower than that measured in vitro and depended on the specific resistance mechanism operating.
Resumo:
The nature of the mysterious minor lymphocyte stimulating (Mls) antigens has recently been clarified. These molecules which were key elements for our current understanding of immune tolerance, have a strong influence on the mouse immune system and are encoded by the open reading frame (orf) of endogenous and exogenous mouse mammary tumor viruses (MMTV's). The knowledge that these antigens are encoded by cancerogenic retroviruses opens an interdisciplinary approach for understanding the mechanisms of immune responses and immune tolerance, retroviral carcinogenesis, and retroviral strategies for infection.
Resumo:
Telomerase activity, not detectable in somatic cells but frequently activated during carcinogenesis, confers immortality to tumors. Mechanisms governing expression of the catalytic subunit hTERT, the limiting factor for telomerase activity, still remain unclear. We previously proposed a model in which the binding of the transcription factor CTCF to the two first exons of hTERT results in transcriptional inhibition in normal cells. This inhibition is abrogated, however, by methylation of CTCF binding sites in 85% of tumors. Here, we showed that hTERT was unmethylated in testicular and ovarian tumors and in derivative cell lines. We demonstrated that CTCF and its paralogue, BORIS/CTCFL, were both present in the nucleus of the same cancer cells and bound to the first exon of hTERT in vivo. Moreover, exogenous BORIS expression in normal BORIS-negative cells was sufficient to activate hTERT transcription with an increasing number of cell passages. Thus, expression of BORIS was sufficient to allow hTERT transcription in normal cells and to counteract the inhibitory effect of CTCF in testicular and ovarian tumor cells. These results define an important contribution of BORIS to immortalization during tumorigenesis.
Resumo:
Inflammasomes are key inducers of inflammation in response to exogenous and endogenous stimuli, because they regulate the processing and secretion of the proinflammatory cytokines IL-1β and IL-18. Thus, inflammasomes have a crucial role in host defence against infection, but they can also be involved in inflammatory diseases. Indeed, the NLRP3 (NOD-, LRR- and pyrin domain-containing 3) inflammasome has been shown to play a part in several inflammatory rheumatic disorders, although the mechanisms involved are better elucidated in some of these diseases than in others. In particular, the pathogenesis of cryopyrin-associated periodic syndromes and microcrystal-induced arthritides is thought to be dependent on activation of the NLRP3 inflammasome, and IL-1 inhibition has shown efficacy as a therapeutic strategy in both groups of conditions. In this Review, we describe the current understanding of the mechanisms that trigger the inflammasome, and consider the relevance of the inflammasome to a variety of rheumatic diseases. In addition, we discuss the current therapies targeting this molecular complex, as well as future therapeutic prospects.
Resumo:
Short-term dynamic psychotherapy (STDP) has rarely been investigated with regard to its underlying mechanisms of change, even if psychoanalytic theory informs us about several potential putative mechanisms of change in patients. Change in overall defensive functioning is one. In this study, we explored the role of overall defensive functioning, by comparing it on the process level with the neighbouring concept of overall coping functioning. A total of N=32 patients, mainly presenting adjustment disorder, were included in the study. The patients underwent STDP up to 40 sessions; three sessions per psychotherapy were transcribed and analyzed by using two observer-rating scales: Defense Mechanism Rating Scales (Perry, 1990) and Coping Action Patterns (Perry, Drapeau, Dunkley, & Blake, 2005). Hierarchical linear modeling was applied to model the change over the course of therapy and relate it to outcome. Results suggest that STDP has an effect on the target variable of overall defensive functioning, which was absent for overall coping functioning. Links with outcome confirm the importance of the effect. These results are discussed from methodological and clinical viewpoints.
Resumo:
High altitude constitutes an exciting natural laboratory for medical research. Over the past decade, high-altitude studies have provided important new insight into the regulation of the pulmonary circulation. Studies in high-altitude pulmonary edema (HAPE)-prone subjects, a condition characterized by exaggerated hypoxic pulmonary hypertension, have provided evidence for the central role of pulmonary vascular endothelial and respiratory epithelial nitric oxide for pulmonary artery pressure homeostasis. Studies of healthy and maladapted high-altitude dwellers have provide important new insight into mechanisms conferring protection against/predisposing to pulmonary hypertension. Finally, the ambient hypoxia associated with high-altitude exposure facilitates the detection of pulmonary (and systemic) vascular dysfunction at an early stage. Here, we will summarize recent studies that, by capitalizing on these observations, have led to the description of novel mechanisms underpinning pulmonary hypertension and to the first direct demonstration of fetal programming of pulmonary vascular dysfunction in humans.
Resumo:
Astrocytes are highly secretory cells, participating in rapid brain communication by releasing glutamate. Recent evidences have suggested that this process is largely mediated by Ca(2+)-dependent regulated exocytosis of VGLUT-positive vesicles. Here by taking advantage of VGLUT1-pHluorin and TIRF illumination, we characterized mechanisms of glutamate exocytosis evoked by endogenous transmitters (glutamate and ATP), which are known to stimulate Ca(2+) elevations in astrocytes. At first we characterized the VGLUT1-pHluorin expressing vesicles and found that VGLUT1-positive vesicles were a specific population of small synaptic-like microvesicles containing glutamate but which do not express VGLUT2. Endogenous mediators evoked a burst of exocytosis through activation of G-protein coupled receptors. Subsequent glutamate exocytosis was reduced by about 80% upon pharmacological blockade of the prostaglandin-forming enzyme, cyclooxygenase. On the other hand, receptor stimulation was accompanied by extracellular release of prostaglandin E2 (PGE2). Interestingly, administration of exogenous PGE2 produced per se rapid, store-dependent burst exocytosis of glutamatergic vesicles in astrocytes. Finally, when PGE2-neutralizing antibody was added to cell medium, transmitter-evoked exocytosis was again significantly reduced (by about 50%). Overall these data indicate that cyclooxygenase products are responsible for a major component of glutamate exocytosis in astrocytes and that large part of such component is sustained by autocrine/paracrine action of PGE2.
Resumo:
Understanding brain reserve in preclinical stages of neurodegenerative disorders allows determination of which brain regions contribute to normal functioning despite accelerated neuronal loss. Besides the recruitment of additional regions, a reorganisation and shift of relevance between normally engaged regions are a suggested key mechanism. Thus, network analysis methods seem critical for investigation of changes in directed causal interactions between such candidate brain regions. To identify core compensatory regions, fifteen preclinical patients carrying the genetic mutation leading to Huntington's disease and twelve controls underwent fMRI scanning. They accomplished an auditory paced finger sequence tapping task, which challenged cognitive as well as executive aspects of motor functioning by varying speed and complexity of movements. To investigate causal interactions among brain regions a single Dynamic Causal Model (DCM) was constructed and fitted to the data from each subject. The DCM parameters were analysed using statistical methods to assess group differences in connectivity, and the relationship between connectivity patterns and predicted years to clinical onset was assessed in gene carriers. In preclinical patients, we found indications for neural reserve mechanisms predominantly driven by bilateral dorsal premotor cortex, which increasingly activated superior parietal cortices the closer individuals were to estimated clinical onset. This compensatory mechanism was restricted to complex movements characterised by high cognitive demand. Additionally, we identified task-induced connectivity changes in both groups of subjects towards pre- and caudal supplementary motor areas, which were linked to either faster or more complex task conditions. Interestingly, coupling of dorsal premotor cortex and supplementary motor area was more negative in controls compared to gene mutation carriers. Furthermore, changes in the connectivity pattern of gene carriers allowed prediction of the years to estimated disease onset in individuals. Our study characterises the connectivity pattern of core cortical regions maintaining motor function in relation to varying task demand. We identified connections of bilateral dorsal premotor cortex as critical for compensation as well as task-dependent recruitment of pre- and caudal supplementary motor area. The latter finding nicely mirrors a previously published general linear model-based analysis of the same data. Such knowledge about disease specific inter-regional effective connectivity may help identify foci for interventions based on transcranial magnetic stimulation designed to stimulate functioning and also to predict their impact on other regions in motor-associated networks.
Resumo:
In human somatic cells, including T lymphocytes, telomeres progressively shorten with each cell division, eventually leading to a state of cellular senescence. Ectopic expression of telomerase results in the extension of their replicative life spans without inducing changes associated with transformation. However, it is yet unknown whether somatic cells that overexpress telomerase are physiologically indistinguishable from normal cells. Using CD8+ T lymphocyte clones overexpressing telomerase, we investigated the molecular mechanisms that regulate T cell proliferation. In this study, we show that early passage T cell clones transduced or not with human telomerase reverse transcriptase displayed identical growth rates upon mitogenic stimulation and no marked global changes in gene expression. Surprisingly, reduced proliferative responses were observed in human telomerase reverse transcriptase-transduced cells with extended life spans. These cells, despite maintaining high expression levels of genes involved in the cell cycle progression, also showed increased expression in several genes found in common with normal aging T lymphocytes. Strikingly, late passage T cells overexpressing telomerase accumulated the cyclin-dependent inhibitors p16Ink4a and p21Cip1 that have largely been associated with in vitro growth arrest. We conclude that alternative growth arrest mechanisms such as those mediated by p16Ink4a and p21Cip1 still remained intact and regulated the growth potential of cells independently of their telomere status.
Resumo:
Résumé : Le centrosome contient une paire de centrioles entourée par du matériel péricentriolaire (PCM) et cet ensemble constitue le centre organisateur des microtubules de la majorité des cellules animales. Tout comme l'ADN, 1'unique centrosome présent au début du cycle cellulaire est dupliqué une et une seule fois pour former deux centrosomes qui vont orchestrer la mise en place du fuseau mitotique. La duplication du centrosome doit être soumise à une régulation précise car la présence d'un seul ou de plus de deux centrosomes peut entraîner la formation d'un fuseau mitotique aberrant, la mauvaise ségrégation des chromosomes et l'aneuploïdie. Bien que la duplication des centrioles soit un phénomène clé pour la duplication du centrosome lui-même, les mécanismes impliqués dans la formation des centrioles sont peu connus et constituent une importante question de biologie cellulaire. Dans cette thèse, nous nous sommes concentrés sur l'analyse de HsSAS-6. Nous avons trouvé que cette protéine est nécessaire pour la formation d'un centriole et qu'elle est localisée spécifiquement à la base des nouveaux centrioles formés. Les niveaux de HsSAS-6 oscillent pendant le cycle cellulaire : la protéine est absente en G1, commence à s'accumuler au niveau du centriole et dans le cytoplasme dès le début de la phase S de synthèse et disparaît abruptement pendant l'anaphase, où probablement APC/CCdlh1 la dirige vers une dégradation par le protéasome 26S. Il est important de noter que la surexpression de HsSAS-6 entraîne la formation de multiples centrioles au lieu d'un seul, ce qui indique que les niveaux de HsSAS-6 déterminent le nombre de centrioles formés. En plus de HsSAS-6, nous avons aussi étudié la lignée mutante sas-2 de C. elegans qui quelques fois assemble un fuseau multi-polaire dans l'embryon à une cellule. Nous avons montré que ce phénotype est la conséquence de la présence de multiples centrioles dans les cellules du sperme. Enfin, nous avons aussi préparé une palette de vecteurs compatibles avec le système Gateway pour permettre la génération rapide de lignées cellulaires humaines exprimant des protéines de manière inductible. De plus, nous avons commencé à développer une méthode pour évaluer la duplication des centrioles par le biais d'une plateforme de criblage d'une librairie de siRNA humains. Dans l'ensemble, notre travail a pu apporter une nouvelle compréhension du processus de duplication des centrioles et a contribué au développement de nouveaux outils de recherche de ce processus. Summary : Centrosomes contain a pair of centrioles surrounded by pericentriolar material (PCM) and serve as the main microtubule organizing centers (MTOCs) of most animal cells. Just like the DNA, the single centrosome present early in the cell cycle duplicates once and only once to give rise to two centrosomes which will then direct assembly of a bipolar spindle. Centrosome duplication must be precisely regulated because the presence of either one or more than two centrosomes can lead to the assembly of an aberrant spindle, chromosome missegregation and aneuploidy. Although duplication of centrioles is key for that of the entire centrosome, the mechanisms underlying centriole formation are poorly understood and represent an important question in cell biology. In this thesis, we focused on the analysis of HsSAS-6. We found that this protein is required for centriole formation and that it is localized specifically at the base of newly forming centrioles. The levels of HsSAS-6 oscillate across the cell cycle. The protein is absent during G1, starts to accumulate at the centriole and in the cytoplasm at the onset of S phase and disappears abruptly during anaphase when it is targeted for 26S proteasome dependent degradation probably by the APC/CCdh1. Importantly, overexpression of HsSAS-6 leads to the formation of multiple centrioles instead of just one, indicating that levels of HsSAS-6 determine the number of centrioles at each cell cycle. Besides HsSAS-6 that is the main focus of this thesis, we have also investigated the C. elegans mutant strain sas-2, which sometimes assembles a multipolar spindle in the one cell stage embryo. We have shown that this phenotype derives from the presence of multiple centrioles in sperm cells. Moreover, we prepared a set of Gateway compatible vectors for fast generation of human cell lines with inducible protein expression. Finally, we started to develop an assay for centriole duplication that can be used in a high throughput setting for screening of human siRNA libraries. Taken together, our work brought novel insights into the process of centriole duplication and lead to the development of new tools for further investigation of this process.
Resumo:
In this technical report, we approach one of the practical aspects when it comes to represent users' interests from their tagging activity, namely the categorization of tags into high-level categories of interest. The reason is that the representation of user profiles on the basis of the myriad of tags available on the Web is certainly unfeasible from various practical perspectives; mainly concerningthe unavailability of data to reliably, accurately measure interests across such fine-grained categorization, and, should the data be available, its overwhelming computational intractability. Motivated by this, our study presents the results of a categorization process whereby a collection of tags posted at BibSonomy #http://www.bibsonomy.org# are classified into 5 categories of interest. The methodology used to conduct such categorization is in line with other works in the field.
Resumo:
Pseudomonas fluorescens EPS62e was selected during a screening procedure for its high efficacy in controlling infections by Erwinia amylovora, the causal agent of fire blight disease, on different plant materials. In field trials carried out in pear trees during bloom, EPS62e colonized flowers until the carrying capacity, providing a moderate efficacy of fire-blight control. The putative mechanisms of EPS62e antagonism against E. amylovora were studied. EPS62e did not produce antimicrobial compounds described in P. fluorescens species and only developed antagonism in King’s B medium, where it produced siderophores. Interaction experiments in culture plate wells including a membrane filter, which physically separated the cultures, confirmed that inhibition of E. amylovora requires cell-to-cell contact. The spectrum of nutrient assimilation indicated that EPS62e used significantly more or different carbon sources than the pathogen. The maximum growth rate and affinity for nutrients in immature fruit extract were higher in EPS62e than in E. amylovora, but the cell yield was similar. The fitness of EPS62e and E. amylovora was studied upon inoculation in immature pear fruit wounds and hypanthia of intact flowers under controlled-environment conditions. When inoculated separately, EPS62e grew faster in flowers, whereas E. amylovora grew faster in fruit wounds because of its rapid spread to adjacent tissues. However, in preventive inoculations of EPS62e, subsequent growth of EPS101 was significantly inhibited. It is concluded that cell-to-cell interference as well as differences in growth potential and the spectrum and efficiency of nutrient use are mechanisms of antagonism of EPS62e against E. amylovora
Resumo:
Epidemiological studies in humans have demonstrated a relationship between pathological events during fetal development and increased cardiovascular risk later in life and have led to the so called "Fetal programming of cardiovascular disease hypothesis". The recent observation of generalised vascular dysfunction in young apparently healthy children conceived by assisted reproductive technologies (ART) provides a novel and potentially very important example of this hypothesis. This review summarises recent data in ART children demonstrating premature subclinical atherosclerosis in the systemic circulation and pulmonary vascular dysfunction predisposing to exaggerated hypoxia-induced pulmonary hypertension. These problems appear to be related to the ART procedure per se. Studies in ART mice demonstrating premature vascular aging and arterial hypertension further demonstrate the potential of ART to increase cardiovascular risk and have allowed to unravel epigenetic alterations of the eNOS gene as an underpinning mechanism. The roughly 25% shortening of the life span in ART mice challenged with a western style high-fat-diet demonstrates the potential importance of these alterations for the long-term outcome. Given the young age of the ART population, data on cardiovascular endpoints will not be available before 20 to 30 years from now. However, already now cohort studies of the ART population are needed to early detect cardiovascular alterations with the aim to prevent or at least optimally treat cardiovascular complications. Finally, a debate needs to be engaged on the future of ART and the consequences of its exponential growth for public health.