960 resultados para Euler, Teorema de
Resumo:
We present a systematical numerical study of the effects of adiabatic exponent gamma on Richtmyer-Meshkov instability (RMI) driven by cylindrical shock waves, based on the gamma model for the multi-component problems and numerical simulation with high-order and high-resolution method for compressible Euler equations. The results show that the RMI of different gamma across the interface exhibits different evolution features with the case of single gamma. Moreover, the large gamma can hold back the development of nonlinear structures, such as spikes and bubbles.
Resumo:
本文根据来流马赫数M∞选取坐标变换函数,将M∞→1时的低超声速回球绕流前体流场变换到矩形的计算区域,忽略粘性影响,采用时间相关法,用TVD有限差分格式求Euler方程的定常解,得到了M∞=1.05、1.01和1.005的流场分布。结果与弹道靶的实验吻合较好
Resumo:
用二维流体弹塑性体模型和Euler算法,完成了粉末爆炸烧结的数值模拟;给出了爆炸烧结 过程中密度分布和压力分布;研究了炸药和粉末参数对爆炸烧结的影响;讨论了几种实验装置设计方案的效果。数值模拟和实验结果作了比较,结果令人满意。
Resumo:
在前人工作的基础上, 提出了干旱区陆气水热交换土壤分层模式, 分析了数学模型中温度变化与水分运动分层的物理原因, 详细分计了气候状况对地表面能量交换的影响, 改进了强迫恢复法, 提出了有限差分析算中的具有二阶精度的Euler隐式格式, 采用新的计算净辐射、地表温度、土壤蒸发及水分变化的计算公式, 尽量减少对测量数据的依赖性, 使模式更趋于实用。以此模式对新疆塔里木盆地阿克苏水平衡试验站地区的土壤、植被、大气间水热交换过程进行了数值摸拟, 并与其他计算方法及实测值进行了比较, 模拟 结果与实测值吻合较好。
Resumo:
为克服涡旋法不能精确预计物体附近小尺度流动结构的理论缺陷,减少高Reynolds数流动N-S方程差分解的困难,本文提出一种区域分解、杂交耦合N-S方程有限差分解及涡旋法的新的数值模型和理论方法.将流场分解为内外两区,在靠近物体表面、范围为O(R)的内区进行N-S方程有限差分解,外区作Lagrange-Euler涡旋法解,建立了分区流动的联结、耦合条件,给出了杂交耦合求解的数值计算方法.用本方法作了Re=10~2,10~3的圆柱绕流计算,考察了区域交界面位置变化时解的稳定性.与全场N-S方程解及实验结果的比较表明本文方法能精确预计流动分离及近场流动的详细结构,并可有效地计算流动的总体特性,且比全场N-S方程解显著节省机时和计算量.
Resumo:
采用Bermin的孔洞成核的局部应力准则以及Euler坐标系下大应变有限元方法,分析了平面应变条件下二相粒子与基体在三种不同的界面结合强度下的宏观材料的力学行为.
Resumo:
本文从流场中空间和时间的尺度分析及流体力学基本方程组(BEFM)中诸项的量级分析出发,提出了BEFM的层次结构理论,表明:当特征雷诺数Re>l、且一坐标方向的长度尺度大于其它坐标方向的长度尺度吋,按照BEFM中诸项的量级关系,形成从Euler方程到 BEFM 和从边界层方程到 BEFM 的两支层次结构,文中以二维可压缩流动和不可压缩轴对称射流为例说明了两支层次结构的关系和特点,分析了诸层次方程组的特征、次特征(Subcharacteristics)以及它们的数学性质,并把诸层次方程组与已有的诸简化Navier-Stakes方程组(SNSE)作了对照比较。
Resumo:
本文在文献[1]的基础上,按照流场中长度尺度分布,惯性项与粘性项相对大小及数量级简化基本方程和划分流动区域的原则,给出:(1)可压缩绕球粘性流和射流的简化Navier-Stokes(NS)方程的层次结构和诸简化NS方程(SNSE),表明从边界层方程到NS方程和从Euler方程到NS方程的层次结构均包含十多种SNSE,但就SNSE的数学特征而言证明只有椭圆型,扩散抛物化和抛物型三类;(2)扩散抛物化方程(DPE)的数学特征与Euler方程一致,力学上表示扰动通过“压力梯度项”向上游传播,高阶扩散项“规定的”椭圆型下游效应可以忽略,故判断诸DPE优劣的标准应看能否准确计算压力场。(3)提出粘性流的多层结构模型,对绕固壁附近的流动为三层,即粘性层、过渡层和无粘层,给出了分层的准则;适用于三层的最简单和最重要的SNSE分别为边界层方程、诸层匹配(LsM)-SNSE和Euler方程;LsM-SNSE同时适用于三层、即适用于全流场,并可准确计算压力场。LsM-SNSE把两层、即内外层匹配SNSE推广为多层。(4)对平板绕流,给出附着流及分离流的新的三层结构,阐明了附着流三层向分离流三层过渡的力学特征。
Resumo:
本文将国际上流行的两点张量法及 Lagrange 描写方法统一起来。运用虚功原理及张量变换得到了 Lagrangian 坐标系及 Euler 坐标系中的应力率平衡方程以及与之等价的变分方程;同时推导出塑性大变形三维有限元公式。作为特例又导出二维平面应变及平面应力的有限元公式。
Resumo:
本文给出了用形变理论分析结构塑性屈曲时的一类广义变分原理,说明了它在本质上的势能意义。在广义变分形式下论证了塑性屈曲时无卸载的根据。最后在简化加筋板壳的分析中作了应用示例。
Resumo:
<正> 简化N-S方程组具有抛物-双曲方程组的特性,对定常情况可用向前推进的计算方法,要比数值求解椭圆型完全N-S方程组简单得多;求解简化N-S方程组能够同时算出无粘外部流和粘性边界层流,理论上要比先算无粘流、然后再算粘性边界层流的常规方法
Resumo:
This paper proposes criteria for predicting the tendency of looping in tropical cyclone tracks using the approach of vortex dynamics. We model the asymmetric structure of a cyclone by a system of vortex patches. The evolution of such system of vortices is simulated by the method of contour dynamics. A new set of exact analytic formulas for contour dynamics calculations is derived, which is shown to be more computationally effective. Based on point-vortex models, we derive analytic formulas for the criteria of looping in a cyclone track. From numerical experiments, the simulated trajectories obtained from the point-vortex system and vortex patch system agree quite well. Hence, the looping criteria obtained from the point-vortex system can be applied by forecasters to stay alert for tendency of looping in a cyclone track. To demonstrate the applicability of the proposed criteria, the trajectory of Typhoon Yancy (9012), whose field data are available from ''TCM-90'', is simulated. The case study shows that the asymmetric structure similar to the pattern of a beta gyre is responsible for its recurvature when Yancy landed Fujian Province, China on 20 August 1990.
Resumo:
The discrete vortex method is not capable of precisely predicting the bluff body flow separation and the fine structure of flow field in the vicinity of the body surface. In order to make a theoretical improvement over the method and to reduce the difficulty in finite-difference solution of N-S equations at high Reynolds number, in the present paper, we suggest a new numerical simulation model and a theoretical method for domain decomposition hybrid combination of finite-difference method and vortex method. Specifically, the full flow. field is decomposed into two domains. In the region of O(R) near the body surface (R is the characteristic dimension of body), we use the finite-difference method to solve the N-S equations and in the exterior domain, we take the Lagrange-Euler vortex method. The connection and coupling conditions for flow in the two domains are established. The specific numerical scheme of this theoretical model is given. As a preliminary application, some numerical simulations for flows at Re=100 and Re-1000 about a circular cylinder are made, and compared with the finite-difference solution of N-S equations for full flow field and experimental results, and the stability of the solution against the change of the interface between the two domains is examined. The results show that the method of the present paper has the advantage of finite-difference solution for N-S equations in precisely predicting the fine structure of flow field, as well as the advantage of vortex method in efficiently computing the global characteristics of the separated flow. It saves computer time and reduces the amount of computation, as compared with pure N-S equation solution. The present method can be used for numerical simulation of bluff body flow at high Reynolds number and would exhibit even greater merit in that case.
Resumo:
基于Bernoulli-Euler梁振动理论,以等效弹簧来模拟裂纹引起的局部软化效应和由非完全固支边界条件引起的转角效应.推导了悬臂梁在不确定边界条件下确定其振动频率的特征方程,直接利用该特征方程,提出一种有效估计裂纹参数的优化方法,通过计算测量频率和理论频率之间的误差目标函数最小化即可识别裂纹参数-裂纹位置和深度.最后,应用两个实例-理想固支边界条件下和非完全固支边界条件下的悬臂梁实验来说明本文方法的有效性.实验结果表明:只需梁结构前三阶频率即可识别裂纹位置和深度.对于理想边界条件下的裂纹参数识别,在测量频率存在小误差情况下,该方法仍能给出比较满意的结果,对于非完全固支边界条件下的裂纹参数识别,利用本文方法能得到比Narkis的方法更精确的裂纹位置识别结果.同时本文方法还能给出比较满意的裂纹深度识别结果.
Resumo:
研究了超音速钝锥绕流的稳定性和转捩点预报的数值计算方法,首先采用Euler方程求解钝锥绕流基本流场,用所得到的物面压力分布作为粘性边界层的外缘压力分布,给出了基本流场的初值;然后应用反迭代法与边界层渐近匹配的方法求解了钝锥边界层的稳定性方程,得到了钝锥边界层转捩数据,该方法可提高计算精度,节约计算时间。