965 resultados para Estrogen a and ß receptors


Relevância:

40.00% 40.00%

Publicador:

Resumo:

NK cell function is regulated by a dual receptor system, which integrates signals from triggering receptors and MHC class I-specific inhibitory receptors. We show here that the src family kinase Fyn is required for efficient, NK cell-mediated lysis of target cells, which lack both self-MHC class I molecules and ligands for NKG2D, an activating NK cell receptor. In contrast, NK cell inhibition by the MHC class I-specific receptor Ly49A was independent of Fyn, suggesting that Fyn is specifically required for NK cell activation via non-MHC receptor(s). Compared to wild type, significantly fewer Fyn-deficient NK cells expressed the inhibitory Ly49A receptor. The presence of a transgenic Ly49A receptor together with its H-2(d) ligand strongly reduced the usage of endogenous Ly49 receptors in Fyn-deficient mice. These data suggest a model in which the repertoire of inhibitory Ly49 receptors is formed under the influenced of Fyn-dependent NK cell activation as well as the respective MHC class I environment. NK cells may acquire Ly49 receptors until they generate sufficient inhibitory signals to balance their activation levels. Such a process would ensure the induction of NK cell self-tolerance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVEEvaluate whether healthy or diabetic adult mice can tolerate an extreme loss of pancreatic α-cells and how this sudden massive depletion affects β-cell function and blood glucose homeostasis.RESEARCH DESIGN AND METHODSWe generated a new transgenic model allowing near-total α-cell removal specifically in adult mice. Massive α-cell ablation was triggered in normally grown and healthy adult animals upon diphtheria toxin (DT) administration. The metabolic status of these mice was assessed in 1) physiologic conditions, 2) a situation requiring glucagon action, and 3) after β-cell loss.RESULTSAdult transgenic mice enduring extreme (98%) α-cell removal remained healthy and did not display major defects in insulin counter-regulatory response. We observed that 2% of the normal α-cell mass produced enough glucagon to ensure near-normal glucagonemia. β-Cell function and blood glucose homeostasis remained unaltered after α-cell loss, indicating that direct local intraislet signaling between α- and β-cells is dispensable. Escaping α-cells increased their glucagon content during subsequent months, but there was no significant α-cell regeneration. Near-total α-cell ablation did not prevent hyperglycemia in mice having also undergone massive β-cell loss, indicating that a minimal amount of α-cells can still guarantee normal glucagon signaling in diabetic conditions.CONCLUSIONSAn extremely low amount of α-cells is sufficient to prevent a major counter-regulatory deregulation, both under physiologic and diabetic conditions. We previously reported that α-cells reprogram to insulin production after extreme β-cell loss and now conjecture that the low α-cell requirement could be exploited in future diabetic therapies aimed at regenerating β-cells by reprogramming adult α-cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Inflammation is intimately linked with naturally occurring remodeling events in the endometrium. Lipoxins comprise a group of short-lived, nonclassic eicosanoids possessing potent anti-inflammatory and proresolution properties. In the present study, we investigated the role of lipoxin A(4) (LXA(4)) in the endometrium and demonstrated that 15-LOX-2, an enzyme necessary for LX biosynthesis, is expressed in this tissue. Our results establish that LXA(4) possesses robust estrogenic activity through its capacity to alter ERE transcriptional activity, as well as expression of estrogen-regulated genes, alkaline phosphatase activity, and proliferation in human endometrial epithelial cells. Interestingly, LXA(4) also demonstrated antiestrogenic potential, significantly attenuating E2-induced activity. This estrogenic activity was directly mediated through estrogen receptors (ERs). Subsequent investigations determined that the actions of LXA(4) are exclusively mediated through ERα and closely mimic those of the potent estrogen 17β-estradiol (E2). In binding assays, LXA(4) competed with E2 for ER binding, with an IC(50) of 46 nM. Furthermore, LXA(4) exhibited estrogenic activity in vivo, increasing uterine wet weight and modulating E2-regulated gene expression. These findings reveal a previously unappreciated facet of LXA(4) bioactions, implicating this lipid mediator in novel immunoendocrine crosstalk mechanisms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The dual function of eosinophils has been evidenced in protective immunity against parasites as well as in pathological manifestations during allergic disorders. We have demonstrated that a new class of IgE receptors, FcepsilonRII/CD23, was involved in the functional duality of eosinophils and other proinflammatory cells. More recently, we have shown that FcepsilonRI, the high affinity IgE receptor thought to be only expressed by basophils and mast cells, was involved in eosinophil-mediated cytotoxicity against schistosomes as well as in mediator release. These results favour the view that both IgE and its receptors have been primarily associated to a protective immune response, rather than to pathology. Not only IgE receptors but also members belonging to the family of adhesion molecules can participate as co-receptors in eosinophil effector function. The inhibitory role of monoclonal antibodies to LewisX (LeX, CD15) or to selectins in eosinophil-mediated cytotoxicity towards schistosomes and the detection of LeX and 'selectin-like' molecules on schistosomula surface indicate a double interaction mediated by selectins and their carbohydrate ligands between eosinophils and schistosomula. These results suggest new functions for these adhesion molecules, previously known to be involved mainly in cell infiltration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

TRAIL induces apoptosis through two closely related receptors, TRAIL-R1 (DR4) and TRAIL-R2 (DR5). Here we show that TRAIL-R1 can associate with TRAIL-R2, suggesting that TRAIL may signal through heteroreceptor signaling complexes. Both TRAIL receptors bind the adaptor molecules FADD and TRADD, and both death signals are interrupted by a dominant negative form of FADD and by the FLICE-inhibitory protein FLIP. The recruitment of TRADD may explain the potent activation of NF-kappaB observed by TRAIL receptors. Thus, TRAIL receptors can signal both death and gene transcription, functions reminiscent of those of TNFR1 and TRAMP, two other members of the death receptor family.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We previously established that exogenous adenosine (ADO) induces transient arrhythmias in the developing heart via the adenosine A1 receptor (A1AR) and downstream activation of NADPH oxidase/ERK and PLC/PKC pathways. Here, we investigated the mechanisms by which accumulation of endogenous ADO and its derived compound inosine (INO) in the interstitial compartment induce rhythm and conduction troubles. The validated model of the spontaneously beating heart obtained from 4-day-old chick embryos was used. Quantitative RT-PCR showed that enzymes involved in ADO and INO metabolism (CD39, CD73 and eADA) as well as equilibrative (ENT1, -3, -4) and concentrative (CNT3) nucleoside transporters were differentially expressed in atria, ventricle and outflow tract. Inactivation of ENTs by dipyridamole, 1) increased myocardial ADO level, 2) provoked atrial arrhythmias and atrio-ventricular blocks (AVB) in 70% of the hearts, 3) prolonged P wave and QT interval without altering contractility, and 4) increased ERK2 phosphorylation. Blockade of CD73-mediated phosphohydrolysis of AMP to ADO, MEK/ERK pathway inhibition or A1AR inhibition prevented these arrhythmias. Exposure to exogenous INO also caused atrial ectopy associated with AVB and ERK2 phosphorylation which were prevented by A1AR or A2AAR antagonists exclusively or by MEK/ERK inhibitor. Inhibition of ADA-mediated conversion of ADO to INO increased myocardial ADO and decreased INO as expected, but slightly augmented heart rate variability without provoking AVB. Thus, during cardiogenesis, disturbances of nucleosides metabolism and transport, can lead to interstitial accumulation of ADO and INO and provoke arrhythmias in an autocrine/paracrine manner through A1AR and A2AAR stimulation and ERK2 activation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PPARbeta is expressed in the mouse epidermis during fetal development, and progressively disappears from the interfollicular epidermis after birth. Interestingly, its expression is strongly reactivated in the adult epidermis in conditions where keratinocyte proliferation is induced and during wound healing. Data obtained on PPARbeta heterozygous mice reveal that PPARbeta is implicated in the control of keratinocyte proliferation and is necessary for rapid healing of a skin wound.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Addictive properties of drugs of misuse are generally considered to be mediated by an increased release of dopamine (DA) in the ventral striatum. However, recent experiments indicated an implication of alpha1b-adrenergic receptors in behavioural responses to psychostimulants and opiates. We show now that DA release induced in the ventral striatum by morphine (20 mg/kg) is completely blocked by prazosin (1 mg/kg), an alpha1-adrenergic antagonist. However, morphine-induced increases in DA release in the ventral striatum were found to be similar in mice deleted for the alpha1b-adrenergic receptor (alpha1b-AR KO) and in wild-type (WT) mice, suggesting the presence of a compensatory mechanism. This acute morphine-evoked DA release was completely blocked in alpha1b-AR KO mice by SR46349B (1 mg/kg), a 5-HT2A antagonist. SR46349B also completely blocked, in alpha1b-AR KO mice, the locomotor response and the development of behavioural sensitization to morphine (20 mg/kg) and D-amphetamine (2 mg/kg). Accordingly, the concomitant blockade of 5-HT2A and alpha1b-adrenergic receptors in WT mice entirely blocked acute locomotor responses but also the development of behavioural sensitization to morphine, D-amphetamine or cocaine (10 mg/kg). We observed, nevertheless, that inhibitory effects of each antagonist on locomotor responses to morphine or D-amphetamine were more than additive (160%) in naïve WT mice but not in those sensitized to either drug. Because of these latter data and the possible compensation by 5-HT2A receptors for the genetic deletion of alpha1b-adrenergic receptors, we postulate the existence of a functional link between these receptors, which vanishes during the development of behavioural sensitization.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A woman's risk of breast cancer is strongly affected by her reproductive history. The hormonal milieu is also a key determinant of the course of the disease. Combining mouse genetics with tissue recombination techniques, we have established that the female reproductive hormones, estrogens, progesterone, and prolactin, act sequentially on the mammary epithelium to trigger distinct developmental steps. The hormones impinge directly on a subset of luminal mammary epithelial cells that express the respective hormone receptors and act as sensor cells translating and amplifying systemic signals into local stimuli. Local signaling is stage and age specific. During puberty, estrogens promote proliferation using the EGF family member, amphiregulin, as essential paracrine mediator. In adulthood, progesterone, rather than estrogen, is the major inducer of stem cell activation and cell proliferation of the mammary epithelium. Hormonal signaling modulates crucial developmental pathways that impinge on mammary stem cell populations, while Notch signaling, by inhibiting p63, is central to mammary cell fate determination. Cell proliferation occurs in two waves. The first results from direct stimulation of the small fraction of hormone receptor positive cells. It is followed by a second wave of progesterone-induced proliferation involving mostly hormone receptor negative cells, in which RANKL is a key mediator. A model in which repeated activation of paracrine signaling by progesterone with resulting stem cell activation promotes breast carcinogenesis is proposed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In Alzheimer's disease (AD), synaptic alterations play a major role and are often correlated with cognitive changes. In order to better understand synaptic modifications, we compared alterations in NMDA receptors and postsynaptic protein PSD-95 expression in the entorhinal cortex (EC) and frontal cortex (FC; area 9) of AD and control brains. We combined immunohistochemical and image analysis methods to quantify on consecutive sections the distribution of PSD-95 and NMDA receptors GluN1, GluN2A and GluN2B in EC and FC from 25 AD and control cases. The density of stained receptors was analyzed using multivariate statistical methods to assess the effect of neurodegeneration. In both regions, the number of neuronal profiles immunostained for GluN1 receptors subunit and PSD-95 protein was significantly increased in AD compared to controls (3-6 fold), while the number of neuronal profiles stained for GluN2A and GluN2B receptors subunits was on the contrary decreased (3-4 fold). The increase in marked neuronal profiles was more prominent in a cortical band corresponding to layers 3 to 5 with large pyramidal cells. Neurons positive for GluN1 or PSD-95 staining were often found in the same localization on consecutive sections and they were also reactive for the anti-tau antibody AD2, indicating a neurodegenerative process. Differences in the density of immunoreactive puncta representing neuropile were not statistically significant. Altogether these data indicate that GluN1 and PSD-95 accumulate in the neuronal perikarya, but this is not the case for GluN2A and GluN2B, while the neuropile compartment is less subject to modifications. Thus, important variations in the pattern of distribution of the NMDA receptors subunits and PSD-95 represent a marker in AD and by impairing the neuronal network, contribute to functional deterioration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In Chagas disease, during the acute phase, the establishment of inflammatory processes is crucial for Trypanosoma cruzi control in target tissues and for the establishment of host/parasite equilibrium. However, in about 30% of the patients, inflammation becomes progressive, resulting in chronic disease, mainly characterized by myocarditis. Although several hypothesis have been raised to explain the pathogenesis of chagasic myocardiopathy, including the persistence of the parasite and/or participation of autoimmune processes, the molecular mechanisms underlying the establishment of the inflammatory process leading to parasitism control but also contributing to the maintenance of T. cruzi-elicited chronic myocarditis remain unsolved. Trying to shed light on these questions, we have for several years been working with murine models for Chagas disease that reproduce the acute self-resolving meningoencephalitis, the encephalitis resulting of reactivation described in immunodeficient individuals, and several aspects of the acute and chronic myocarditis. In the present review, our results are summarized and discussed under the light of the current literature. Furthermore, rational therapeutic intervention strategies based on integrin-mediated adhesion and chemokine receptor-driven recruitment of leukocytes are proposed to control T. cruzi-elicited unbalanced inflammation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Members of the Ly-49 gene family code for class I MHC-specific receptors that regulate NK cell function. Due to a combinatorial distribution of Ly-49 receptors, NK cells display considerable clonal heterogeneity. The acquisition of one Ly-49 receptor, Ly-49A is strictly dependent on the transcriptional trans-acting factor T cell-specific factor-1 (TCF-1). Indeed, TCF-1 binds to two sites in the Ly-49a promoter and regulates its activity, suggesting that the Ly-49a gene is a direct TCF-1 target. TCF-1 deficiency resulted in the altered usage of additional Ly-49 receptors. We show in this study, using TCF-1 beta(2)-microglobulin double-deficient mice, that these repertoire alterations are not due to Ly-49/MHC class I interactions. Our findings rather suggest a TCF-1-dependent, cell autonomous effect on the acquisition of multiple Ly-49 receptors. Besides reduced receptor usage (Ly-49A and D), we also observed no effect (Ly-49C) and significantly expanded (Ly-49G and I) receptor usage in the absence of TCF-1. These effects did not in all cases correlate with the presence of TCF binding sites in the respective proximal promoter. Therefore, besides TCF-1 binding to the proximal promoter, Ly-49 acquisition may also be regulated by TCF-1 binding to more distant cis-acting elements and/or by regulating the expression of additional trans-acting factors. Consistent with the observed differential, positive or negative role of TCF-1 for Ly-49 receptor acquisition, reporter gene assays revealed the presence of an inducing as well as a repressing TCF site in certain proximal Ly-49 promoters. These findings reveal an important role of TCF-1 for the formation of the NK cell receptor repertoire.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

RESUME : BAFF est un membre de 1a famille du TNF qui contrôle l'homéostasie des lymphocytes B. BAFF lie les récepteurs TACI, BCMA et BAFF-R sur les cellules B, tandis qu'APRIL, son proche homologue, lie seulement TACI et BCMA. BAFF et APRIL sont des protéines transmembranaires pouvant -être relâchées sous forme de cytokines trimériques solubles suite à un clivage protéolytique. Le BAFF soluble peut s'assembler en 60-mère. Les rôles physiologiques des BAFF membranaires et solubles sont inconnnus. Nous avons étudié la capacité de diverses formes de BAFF et APRIL à activer différents récepteurs. BAFF-R répond à toutes les formes dé BAFF, tandis que TACI nécessite du BAFF ou de l'APRIL membranaire ou oligomérisé pour être activé et pour transmettre des signaux de survie dans les lymphocytes B primaires. TACI ne répond pas aux ligands trimériques bien qu'il puisse les lier. TACI est essentiel pour la réponse humorale aux antigènes présentant des épitoges répétitifs, une réponse qui est indépendante des lymphocytes T (réponse TI-2). Des souris exprimant moins de BAFF ont un pourcentage modérément réduit de lymphocytes B et leur réponse TI-2 est atténuée. Par contre, des souris qui n'expriment que du BAFF membranaire ont encore moins de cellules B mais répondent efficacement aux antigènes TI-2. Ces résultats suggèrent que le BAFF soluble est impliqué dans le maintien de la population des lymphocytes B, alors que le BAFF membranaire peut activer TACI lors d'are réponse TI-2. Le BAFF 60-mère est un autre activateur potentiel de TACI in vivo. Le BAFF 60-mère existe dans des surnageants de cellules productrices de BAFF mais n'est pas détecté dans le plasma de souris saines, même lorsqu'elles présentent des niveaux élevés de BAFF. BAFF 60-mère est néanmoins présent dans le plasma de souris transgéniques pour BAFF et de souris déficientes en TACI. Comme ces deux lignées présentent des signes d'autoimmunité, ces résultats suggèrent que la présence de BAFF 60-mère pourrait être liée à des conditions pathologiques. Summary : The TNF family ligand BAFF is essential for B cell homeostasis. BAFF binds to the receptors TACI, BCMA and BAFF-R on B cells, whereas its close homolog APRIL binds to TACI and BCMA only. BAFF and APRIL are transmembrane proteins, which can be proteolytically processed to release trimeric soluble cytokines. Soluble BAFF 3-mer can further assemble in a 60-mer. The physiological roles of membrane-bound and soluble BAFF are unknown. We studied the ability of various forms of BAFF and APRIL to signal through different receptors. BAFF-R responded to all forms of BAFF, but TACI required membrane-bound, cross-licked or oligomeric BAFF or APRIL in order to transmit productive signals in primary B cells. TACI was unresponsive to trimeric ligands, although it could bind them. TACI is essential for T-cell independent antibody responses to antigens with repetitive epitopes (TI-2 responses). Mice expressing lower than normal levels of BAFF displayed a moderate B cell reduction and impaired TI-2 responses, whereas mice expressing membrane-bound BAFF displayed severe B cell reduction, but unimpaired TI-2 responses. These results suggest that processed BAFF is involved in the maintenance of the B cell pool and that membrane-bound BAFF can activate TACI during T-cell independent humoral responses. BAFF 60-mer is another potential activator of TACI in vivo. BAFF 60-mer was detected in the supernatant of BAFF-producing cells, but not in the plasma of healthy mice with either norma1 or elevated BAFF levels. It was however present in sera of BAFF transgenic mice and TACI-/- mice, both of which suffer from autoimmunity, suggesting that GAFF 60-mer may be linked to pathogenic conditions.