1000 resultados para Escape Reaction
Resumo:
A rapid and cost effective DNA test is described to identify European eel (Anguilla anguilla) and North American eel (Anguilla rostrata). By means of polymerase chain reaction (PCR) technique parts of the mitochondrial cytochrome b gene are amplified with species specific primers which are designed to produce PCR fragments of different characteristic sizes for European and American eel. The size differences can easily be made visible by agarose gel electrophoresis
Resumo:
The bifurcation and nonlinear stability properties of the Meinhardt-Gierer model for biochemical pattern formation are studied. Analyses are carried out in parameter ranges where the linearized system about a trivial solution loses stability through one to three eigenfunctions, yielding both time independent and periodic final states. Solution branches are obtained that exhibit secondary bifurcation and imperfection sensitivity and that appear, disappear, or detach themselves from other branches.
Resumo:
Chlorine oxide species have received considerable attention in recent years due to their central role in the balance of stratospheric ozone. Many questions pertaining to the behavior of such species still remain unanswered and plague the ability of researchers to develop accurate chemical models of the stratosphere. Presented in this thesis are three experiments that study various properties of some specific chlorine oxide species.
In the first chapter, the reaction between ClONO_2 and protonated water clusters is investigated to elucidate a possible reaction mechanism for the heterogeneous reaction of chlorine nitrate on ice. The ionic products were various forms of protonated nitric acid, NO_2 +(H_20)_m, m = 0, 1, 2. These products are analogous to products previously reported in the literature for the neutral reaction occurring on ice surfaces. Our results support the hypothesis that the heterogeneous reaction is acid-catalyzed.
In the second chapter, the photochemistry of ClONO_2 was investigated at two wavelengths, 193 and 248 nm, using the technique of photofragmentation translational spectroscopy. At both wavelengths, the predominant dissociation pathways were Cl + NO_3 and ClO + NO_2. Channel assignments were confirmed by momentum matching the counterfragments from each channel. A one-dimensional stratospheric model using the new 248 nm branching ratio determined how our results would affect the predicted Cl_x and NO_x partitioning in the stratosphere.
Chapter three explores the photodissociation dynamics of Cl_2O at 193, 248 and 308 nm. At 193 nm, we found evidence for the concerted reaction channel, Cl_2 + O. The ClO + Cl channel was also accessed, however, the majority of the ClO fragments were formed with sufficient internal energies for spontaneous secondary dissociation to occur. At 248 and 308 nm, we only observed only the ClO + Cl channel. . Some of the ClO formed at 248 nm was formed internally hot and spontaneously dissociated. Bimodal translational energy distributions of the ClO and Cl products indicate two pathways leading to the same product exist.
Appendix A, B and C discuss the details of data analysis techniques used in Chapters 1 and 2. The development of a molecular beam source of ClO dimer is presented in Appendix D.
Resumo:
[EN] A review focused on recent advances in intramolecular aza-Wittig reaction of phosphazenes with several carbonyl or analogous compounds is reported. Phosphazenes afford intramolecular aza-Wittig reaction with different groups within the molecule as aldehydes, ketones, esters, thioesters, amides, anhydrides and sulfimides. One of the most important applications of this reaction is the synthesis of a wide range of heterocyclic compounds, ranging from simple monocyclic compounds to complex polycyclic and macrocyclic systems.
Resumo:
Since its discovery in 1896, the Buchner reaction has fascinated chemists for more than a century. The highly reactive nature of the carbene intermediates allows for facile dearomatization of stable aromatic rings, and provides access to a diverse array of cyclopropane and seven-membered ring architectures. The power inherent in this transformation has been exploited in the context of a natural product total synthesis and methodology studies.
The total synthesis work details efforts employed in the enantioselective total synthesis of (+)-salvileucalin B. The fully-substituted cyclopropane within the core of the molecule arises from an unprecedented intramolecular Buchner reaction involving a highly functionalized arene and an α-diazo-β-ketonitrile. An unusual retro-Claisen rearrangement of a complex late-stage intermediate was discovered on route to the natural product.
The unique reactivity of α-diazo-β-ketonitriles toward arene cyclopropanation was then investigated in a broader methodological study. This specific di-substituted diazo moiety possesses hitherto unreported selectivity in intramolecular Buchner reactions. This technology was enables the preparation of highly functionalized norcaradienes and cyclopropanes, which themselves undergo various ring opening transformations to afford complex polycyclic structures.
Finally, an enantioselective variant of the intramolecular Buchner reaction is described. Various chiral copper and dirhodium catalysts afforded moderate stereoinduction in the cyclization event.
Resumo:
No abstract.
Resumo:
Pyrroloindoline and unnatural tryptophan motifs are important targets for synthesis based on their incorporation into a diverse array of biologically active natural products. Both types of alkaloids have also found applications as chiral catalysts and tryptophan derivatives are commonly employed as biological probes. On account of their applications, these frameworks have inspired the development of numerous enantioselective, catalytic reactions. In particular, the past few years have witnessed an impressive number of novel approaches for pyrroloindoline formation.
The first project described herein involves our contribution to pyrroloindoline research. We have developed an (R)-BINOL•SnCl4-catalyzed formal (3 + 2) cycloaddition reaction between 3-substituted indoles and 2-amidoacrylates that affords pyrroloindoline-2-carboxylates bearing an all-carbon quaternary center. Mechanistic studies have elucidated that the enantiodetermining step is a highly face-selective catalyst-controlled protonation reaction. The subsequent application of this asymmetric protonation strategy to the synthesis of a variety of enantioenriched tryptophan derivatives is also discussed.
Resumo:
To explain the ^(26)Mg isotopic anomaly seen in meteorites (^(26)Al daughter) as well as the observation of 1809-keV γ rays in the interstellar medium (live decay of 26Al) one must know, among other things, the destruction rate of ^(26)Al. Properties of states in ^(27)Si just above the ^(26)Al + p mass were investigated to determine the destruction rate of ^(26)Al via the ^(26)Al(p,γ)^(27)Si reaction at astrophysical temperatures.
Twenty micrograms of ^(26)Al were used to produce two types of Al_2O_3 targets by evaporation of the oxide. One was onto a thick platinum backing suitable for (p,γ) work, and the other onto a thin carbon foil for the (^3He,d) reaction.
The ^(26)Al(p,γ)^(27)Si excitation function, obtained using a germanium detector and voltage-ramped target, confirmed known resonances and revealed new ones at 770, 847, 876, 917, and 928 keV. Possible resonances below the lowest observed one at E_p = 286 keV were investigated using the ^(26)Al(^3He,d)^(27)Si proton-transfer reaction. States in 27Si corresponding to 196- and 286-keV proton resonances were observed. A possible resonance at 130 keV (postulated in prior work) was shown to have a strength of wγ less than 0.02 µeV.
By arranging four large Nal detector as a 47π calorimeter, the 196-keV proton resonance, and one at 247 keV, were observed directly, having wγ = 55± 9 and 10 ± 5 µeV, respectively.
Large uncertainties in the reaction rate have been reduced. At novae temperatures, the rate is about 100 times faster than that used in recent model calculations, casting some doubt on novae production of galactic ^(26)Al.
Resumo:
The energy loss of protons and deuterons in D_2O ice has been measured over the energy range, E_p 18 - 541 kev. The double focusing magnetic spectrometer was used to measure the energy of the particles after they had traversed a known thickness of the ice target. One method of measurement is used to determine relative values of the stopping cross section as a function of energy; another method measures absolute values. The results are in very good agreement with the values calculated from Bethe’s semi-empirical formula. Possible sources of error are considered and the accuracy of the measurements is estimated to be ± 4%.
The D(dp)H^3 cross section has been measured by two methods. For E_D = 200 - 500 kev the spectrometer was used to obtain the momentum spectrum of the protons and tritons. From the yield and stopping cross section the reaction cross section at 90° has been obtained.
For E_D = 35 – 550 kev the proton yield from a thick target was differentiated to obtain the cross section. Both thin and thick target methods were used to measure the yield at each of ten angles. The angular distribution is expressed in terms of a Legendre polynomial expansion. The various sources of experimental error are considered in detail, and the probable error of the cross section measurements is estimated to be ± 5%.
Resumo:
Nucleic acids are a useful substrate for engineering at the molecular level. Designing the detailed energetics and kinetics of interactions between nucleic acid strands remains a challenge. Building on previous algorithms to characterize the ensemble of dilute solutions of nucleic acids, we present a design algorithm that allows optimization of structural features and binding energetics of a test tube of interacting nucleic acid strands. We extend this formulation to handle multiple thermodynamic states and combinatorial constraints to allow optimization of pathways of interacting nucleic acids. In both design strategies, low-cost estimates to thermodynamic properties are calculated using hierarchical ensemble decomposition and test tube ensemble focusing. These algorithms are tested on randomized test sets and on example pathways drawn from the molecular programming literature. To analyze the kinetic properties of designed sequences, we describe algorithms to identify dominant species and kinetic rates using coarse-graining at the scale of a small box containing several strands or a large box containing a dilute solution of strands.
Resumo:
The isomerization of glucose into fructose is a large-scale reaction for the production of high-fructose corn syrup, and is now being considered as an intermediate step in the possible route of biomass conversion into fuels and chemicals. Recently, it has been shown that a hydrophobic, large pore, silica molecular sieve having the zeolite beta structure and containing framework Sn4+ (Sn-Beta) is able to isomerize glucose into fructose in aqueous media. Here, I have investigated how this catalyst converts glucose to fructose and show that it is analogous to that achieved with metalloenzymes. Specifically, glucose partitions into the molecular sieve in the pyranose form, ring opens to the acyclic form in the presence of the Lewis acid center (framework Sn4+), isomerizes into the acyclic form of fructose and finally ring closes to yield the furanose product. Akin to the metalloenzyme, the isomerization step proceeds by intramolecular hydride transfer from C2 to C1. Extraframework tin oxides located within hydrophobic channels of the molecular sieve that exclude liquid water can also isomerize glucose to fructose in aqueous media, but do so through a base-catalyzed proton abstraction mechanism. Extraframework tin oxide particles located at the external surface of the molecular sieve crystals or on amorphous silica supports are not active in aqueous media but are able to perform the isomerization in methanol by a base-catalyzed proton abstraction mechanism. Post-synthetic exchange of Na+ with Sn-Beta alters the glucose reaction pathway from the 1,2 intramolecular hydrogen shift (isomerization) to produce fructose towards the 1,2 intramolecular carbon shift (epimerization) that forms mannose. Na+ remains exchanged onto silanol groups during reaction in methanol solvent, leading to a near complete shift in selectivity towards glucose epimerization to mannose. In contrast, decationation occurs during reaction in aqueous solutions and gradually increases the reaction selectivity to isomerization at the expense of epimerization. Decationation and concomitant changes in selectivity can be eliminated by addition of NaCl to the aqueous reaction solution. Thus, framework tin sites with a proximal silanol group are the active sites for the 1, 2 intramolecular hydride shift in the isomerization of glucose to fructose, while these sites with Na-exchanged silanol group are the active sites for the 1, 2 intramolecular carbon shift in epimerization of glucose to mannose.
Resumo:
Proton-coupled electron transfer (PCET) reactions are ubiquitous throughout chemistry and biology. However, challenges arise in both the the experimental and theoretical investigation of PCET reactions; the rare-event nature of the reactions and the coupling between quantum mechanical electron- and proton-transfer with the slower classical dynamics of the surrounding environment necessitates the development of robust simulation methodology. In the following dissertation, novel path-integral based methods are developed and employed for the direct simulation of the reaction dynamics and mechanisms of condensed-phase PCET.
Resumo:
n-heptane/air premixed turbulent flames in the high-Karlovitz portion of the thin reaction zone regime are characterized and modeled in this thesis using Direct Numerical Simulations (DNS) with detailed chemistry. In order to perform these simulations, a time-integration scheme that can efficiently handle the stiffness of the equations solved is developed first. A first simulation with unity Lewis number is considered in order to assess the effect of turbulence on the flame in the absence of differential diffusion. A second simulation with non-unity Lewis numbers is considered to study how turbulence affects differential diffusion. In the absence of differential diffusion, minimal departure from the 1D unstretched flame structure (species vs. temperature profiles) is observed. In the non-unity Lewis number case, the flame structure lies between that of 1D unstretched flames with "laminar" non-unity Lewis numbers and unity Lewis number. This is attributed to effective Lewis numbers resulting from intense turbulent mixing and a first model is proposed. The reaction zone is shown to be thin for both flames, yet large chemical source term fluctuations are observed. The fuel consumption rate is found to be only weakly correlated with stretch, although local extinctions in the non-unity Lewis number case are well correlated with high curvature. These results explain the apparent turbulent flame speeds. Other variables that better correlate with this fuel burning rate are identified through a coordinate transformation. It is shown that the unity Lewis number turbulent flames can be accurately described by a set of 1D (in progress variable space) flamelet equations parameterized by the dissipation rate of the progress variable. In the non-unity Lewis number flames, the flamelet equations suggest a dependence on a second parameter, the diffusion of the progress variable. A new tabulation approach is proposed for the simulation of such flames with these dimensionally-reduced manifolds.
Resumo:
Over the last century, the silicon revolution has enabled us to build faster, smaller and more sophisticated computers. Today, these computers control phones, cars, satellites, assembly lines, and other electromechanical devices. Just as electrical wiring controls electromechanical devices, living organisms employ "chemical wiring" to make decisions about their environment and control physical processes. Currently, the big difference between these two substrates is that while we have the abstractions, design principles, verification and fabrication techniques in place for programming with silicon, we have no comparable understanding or expertise for programming chemistry.
In this thesis we take a small step towards the goal of learning how to systematically engineer prescribed non-equilibrium dynamical behaviors in chemical systems. We use the formalism of chemical reaction networks (CRNs), combined with mass-action kinetics, as our programming language for specifying dynamical behaviors. Leveraging the tools of nucleic acid nanotechnology (introduced in Chapter 1), we employ synthetic DNA molecules as our molecular architecture and toehold-mediated DNA strand displacement as our reaction primitive.
Abstraction, modular design and systematic fabrication can work only with well-understood and quantitatively characterized tools. Therefore, we embark on a detailed study of the "device physics" of DNA strand displacement (Chapter 2). We present a unified view of strand displacement biophysics and kinetics by studying the process at multiple levels of detail, using an intuitive model of a random walk on a 1-dimensional energy landscape, a secondary structure kinetics model with single base-pair steps, and a coarse-grained molecular model that incorporates three-dimensional geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Our findings are consistent with previously measured or inferred rates for hybridization, fraying, and branch migration, and provide a biophysical explanation of strand displacement kinetics. Our work paves the way for accurate modeling of strand displacement cascades, which would facilitate the simulation and construction of more complex molecular systems.
In Chapters 3 and 4, we identify and overcome the crucial experimental challenges involved in using our general DNA-based technology for engineering dynamical behaviors in the test tube. In this process, we identify important design rules that inform our choice of molecular motifs and our algorithms for designing and verifying DNA sequences for our molecular implementation. We also develop flexible molecular strategies for "tuning" our reaction rates and stoichiometries in order to compensate for unavoidable non-idealities in the molecular implementation, such as imperfectly synthesized molecules and spurious "leak" pathways that compete with desired pathways.
We successfully implement three distinct autocatalytic reactions, which we then combine into a de novo chemical oscillator. Unlike biological networks, which use sophisticated evolved molecules (like proteins) to realize such behavior, our test tube realization is the first to demonstrate that Watson-Crick base pairing interactions alone suffice for oscillatory dynamics. Since our design pipeline is general and applicable to any CRN, our experimental demonstration of a de novo chemical oscillator could enable the systematic construction of CRNs with other dynamic behaviors.