960 resultados para Equations, Quadratic.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Partial differential equations (PDEs) with multiscale coefficients are very difficult to solve due to the wide range of scales in the solutions. In the thesis, we propose some efficient numerical methods for both deterministic and stochastic PDEs based on the model reduction technique.

For the deterministic PDEs, the main purpose of our method is to derive an effective equation for the multiscale problem. An essential ingredient is to decompose the harmonic coordinate into a smooth part and a highly oscillatory part of which the magnitude is small. Such a decomposition plays a key role in our construction of the effective equation. We show that the solution to the effective equation is smooth, and could be resolved on a regular coarse mesh grid. Furthermore, we provide error analysis and show that the solution to the effective equation plus a correction term is close to the original multiscale solution.

For the stochastic PDEs, we propose the model reduction based data-driven stochastic method and multilevel Monte Carlo method. In the multiquery, setting and on the assumption that the ratio of the smallest scale and largest scale is not too small, we propose the multiscale data-driven stochastic method. We construct a data-driven stochastic basis and solve the coupled deterministic PDEs to obtain the solutions. For the tougher problems, we propose the multiscale multilevel Monte Carlo method. We apply the multilevel scheme to the effective equations and assemble the stiffness matrices efficiently on each coarse mesh grid. In both methods, the $\KL$ expansion plays an important role in extracting the main parts of some stochastic quantities.

For both the deterministic and stochastic PDEs, numerical results are presented to demonstrate the accuracy and robustness of the methods. We also show the computational time cost reduction in the numerical examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Hamilton Jacobi Bellman (HJB) equation is central to stochastic optimal control (SOC) theory, yielding the optimal solution to general problems specified by known dynamics and a specified cost functional. Given the assumption of quadratic cost on the control input, it is well known that the HJB reduces to a particular partial differential equation (PDE). While powerful, this reduction is not commonly used as the PDE is of second order, is nonlinear, and examples exist where the problem may not have a solution in a classical sense. Furthermore, each state of the system appears as another dimension of the PDE, giving rise to the curse of dimensionality. Since the number of degrees of freedom required to solve the optimal control problem grows exponentially with dimension, the problem becomes intractable for systems with all but modest dimension.

In the last decade researchers have found that under certain, fairly non-restrictive structural assumptions, the HJB may be transformed into a linear PDE, with an interesting analogue in the discretized domain of Markov Decision Processes (MDP). The work presented in this thesis uses the linearity of this particular form of the HJB PDE to push the computational boundaries of stochastic optimal control.

This is done by crafting together previously disjoint lines of research in computation. The first of these is the use of Sum of Squares (SOS) techniques for synthesis of control policies. A candidate polynomial with variable coefficients is proposed as the solution to the stochastic optimal control problem. An SOS relaxation is then taken to the partial differential constraints, leading to a hierarchy of semidefinite relaxations with improving sub-optimality gap. The resulting approximate solutions are shown to be guaranteed over- and under-approximations for the optimal value function. It is shown that these results extend to arbitrary parabolic and elliptic PDEs, yielding a novel method for Uncertainty Quantification (UQ) of systems governed by partial differential constraints. Domain decomposition techniques are also made available, allowing for such problems to be solved via parallelization and low-order polynomials.

The optimization-based SOS technique is then contrasted with the Separated Representation (SR) approach from the applied mathematics community. The technique allows for systems of equations to be solved through a low-rank decomposition that results in algorithms that scale linearly with dimensionality. Its application in stochastic optimal control allows for previously uncomputable problems to be solved quickly, scaling to such complex systems as the Quadcopter and VTOL aircraft. This technique may be combined with the SOS approach, yielding not only a numerical technique, but also an analytical one that allows for entirely new classes of systems to be studied and for stability properties to be guaranteed.

The analysis of the linear HJB is completed by the study of its implications in application. It is shown that the HJB and a popular technique in robotics, the use of navigation functions, sit on opposite ends of a spectrum of optimization problems, upon which tradeoffs may be made in problem complexity. Analytical solutions to the HJB in these settings are available in simplified domains, yielding guidance towards optimality for approximation schemes. Finally, the use of HJB equations in temporal multi-task planning problems is investigated. It is demonstrated that such problems are reducible to a sequence of SOC problems linked via boundary conditions. The linearity of the PDE allows us to pre-compute control policy primitives and then compose them, at essentially zero cost, to satisfy a complex temporal logic specification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of determining probability density functions of general transformations of random processes is considered in this thesis. A method of solution is developed in which partial differential equations satisfied by the unknown density function are derived. These partial differential equations are interpreted as generalized forms of the classical Fokker-Planck-Kolmogorov equations and are shown to imply the classical equations for certain classes of Markov processes. Extensions of the generalized equations which overcome degeneracy occurring in the steady-state case are also obtained.

The equations of Darling and Siegert are derived as special cases of the generalized equations thereby providing unity to two previously existing theories. A technique for treating non-Markov processes by studying closely related Markov processes is proposed and is seen to yield the Darling and Siegert equations directly from the classical Fokker-Planck-Kolmogorov equations.

As illustrations of their applicability, the generalized Fokker-Planck-Kolmogorov equations are presented for certain joint probability density functions associated with the linear filter. These equations are solved for the density of the output of an arbitrary linear filter excited by Markov Gaussian noise and for the density of the output of an RC filter excited by the Poisson square wave. This latter density is also found by using the extensions of the generalized equations mentioned above. Finally, some new approaches for finding the output probability density function of an RC filter-limiter-RC filter system driven by white Gaussian noise are included. The results in this case exhibit the data required for complete solution and clearly illustrate some of the mathematical difficulties inherent to the use of the generalized equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A technique for obtaining approximate periodic solutions to nonlinear ordinary differential equations is investigated. The approach is based on defining an equivalent differential equation whose exact periodic solution is known. Emphasis is placed on the mathematical justification of the approach. The relationship between the differential equation error and the solution error is investigated, and, under certain conditions, bounds are obtained on the latter. The technique employed is to consider the equation governing the exact solution error as a two point boundary value problem. Among other things, the analysis indicates that if an exact periodic solution to the original system exists, it is always possible to bound the error by selecting an appropriate equivalent system.

Three equivalence criteria for minimizing the differential equation error are compared, namely, minimum mean square error, minimum mean absolute value error, and minimum maximum absolute value error. The problem is analyzed by way of example, and it is concluded that, on the average, the minimum mean square error is the most appropriate criterion to use.

A comparison is made between the use of linear and cubic auxiliary systems for obtaining approximate solutions. In the examples considered, the cubic system provides noticeable improvement over the linear system in describing periodic response.

A comparison of the present approach to some of the more classical techniques is included. It is shown that certain of the standard approaches where a solution form is assumed can yield erroneous qualitative results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I

Numerical solutions to the S-limit equations for the helium ground state and excited triplet state and the hydride ion ground state are obtained with the second and fourth difference approximations. The results for the ground states are superior to previously reported values. The coupled equations resulting from the partial wave expansion of the exact helium atom wavefunction were solved giving accurate S-, P-, D-, F-, and G-limits. The G-limit is -2.90351 a.u. compared to the exact value of the energy of -2.90372 a.u.

Part II

The pair functions which determine the exact first-order wavefunction for the ground state of the three-electron atom are found with the matrix finite difference method. The second- and third-order energies for the (1s1s)1S, (1s2s)3S, and (1s2s)1S states of the two-electron atom are presented along with contour and perspective plots of the pair functions. The total energy for the three-electron atom with a nuclear charge Z is found to be E(Z) = -1.125•Z2 +1.022805•Z-0.408138-0.025515•(1/Z)+O(1/Z2)a.u.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We approach the problem of automatically modeling a mechanical system from data about its dynamics, using a method motivated by variational integrators. We write the discrete Lagrangian as a quadratic polynomial with varying coefficients, and then use the discrete Euler-Lagrange equations to numerically solve for the values of these coefficients near the data points. This method correctly modeled the Lagrangian of a simple harmonic oscillator and a simple pendulum, even with significant measurement noise added to the trajectories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sufficient stability criteria for classes of parametrically excited differential equations are developed and applied to example problems of a dynamical nature.

Stability requirements are presented in terms of 1) the modulus of the amplitude of the parametric terms, 2) the modulus of the integral of the parametric terms and 3) the modulus of the derivative of the parametric terms.

The methods employed to show stability are Liapunov’s Direct Method and the Gronwall Lemma. The type of stability is generally referred to as asymptotic stability in the sense of Liapunov.

The results indicate that if the equation of the system with the parametric terms set equal to zero exhibits stability and possesses bounded operators, then the system will be stable under sufficiently small modulus of the parametric terms or sufficiently small modulus of the integral of the parametric terms (high frequency). On the other hand, if the equation of the system exhibits individual stability for all values that the parameter assumes in the time interval, then the actual system will be stable under sufficiently small modulus of the derivative of the parametric terms (slowly varying).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vectorial Kukhtarev equations modified for the nonvolatile holographic recording in doubly doped crystals are analyzed, in which the bulk photovoltaic effect and the external electrical field are both considered. On the basis of small modulation approximation, both the analytic solution to the space-charge field with time in the recording phase and in the readout phase are deduced. The analytic solutions can be easily simplified to adapt the one-center model, and they have the same analytic expressions given those when the grating vector is along the optical axis. Based on the vectorial analyses of the band transport model an optimal recording direction is given to maximize the refractive index change in doubly doped LiNbO3:Fe: Mn crystals. (c) 2007 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coupled differential recurrence equations for the corrections to the paraxial approximation solutions in transversely nonuniform refractive-index media are established in terms of the perturbation method. All the corrections (including the longitudinal field corrections) to the paraxial approximation solutions are presented in the weak-guidance approximation. As a concrete application, the first-order longitudinal field correction and the second-order transverse field correction to the paraxial approximation of a Gaussian beam propagating in a transversely quadratic refractive index medium are analytically investigated. (C) 1999 Optical Society of America [S0740-3232(99)00310-5].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate theoretically and experimentally compensation for positive Kerr phase shifts with negative phases generated by cascade quadratic processes. Experiments show correction of small-scale self-focusing and whole-beam self-focusing in the spatial domain and self-phase modulation in the temporal domain. (C) 2001 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quadratic optical nonlinearity chi((2)) can be exploited in femtosecond lasers and regarded as a significant new degree of freedom for the design of short-pulse sources. We will review our recent progress on developing nonlinear quadratic technologies for femtosecond lasers. Our nonlinear laser technology offers new properties for femtosecond lasers, including optical parametric amplifier with novel working regime, efficient second harmonic generation, and time telescope.