922 resultados para Eph receptor tyrosine kinase
Resumo:
We identify gAd as a novel ligand for GPVI that stimulates tyrosine kinase-dependent platelet aggregation. Our data raise the possibility that gAd may promote unwanted platelet activation at sites of vascular injury.
Resumo:
The C-type lectin-like receptor CLEC-2 signals via phosphorylation of a single cytoplasmic YXXL sequence known as a hem-immunoreceptor tyrosine-based activation motif (hemITAM). In this study, we show that phosphorylation of CLEC-2 by the snake toxin rhodocytin is abolished in the absence of the tyrosine kinase Syk but is not altered in the absence of the major platelet Src family kinases, Fyn, Lyn, and Src, or the tyrosine phosphatase CD148, which regulates the basal activity of Src family kinases. Further, phosphorylation of CLEC-2 by rhodocytin is not altered in the presence of the Src family kinase inhibitor PP2, even though PLCγ2 phosphorylation and platelet activation are abolished. A similar dependence of phosphorylation of CLEC-2 on Syk is also seen in response to stimulation by an IgG mAb to CLEC-2, although interestingly CLEC-2 phosphorylation is also reduced in the absence of Lyn. These results provide the first definitive evidence that Syk mediates phosphorylation of the CLEC-2 hemITAM receptor with Src family kinases playing a critical role further downstream through the regulation of Syk and other effector proteins, providing a new paradigm in signaling by YXXL-containing receptors.
Resumo:
Filamin A (FlnA) cross-links actin filaments and connects the Von Willebrand factor receptor GPIb-IX-V to the underlying cytoskeleton in platelets. Because FlnA deficiency is embryonic lethal, mice lacking FlnA in platelets were generated by breeding FlnA(loxP/loxP) females with GATA1-Cre males. FlnA(loxP/y) GATA1-Cre males have a macrothrombocytopenia and increased tail bleeding times. FlnA-null platelets have decreased expression and altered surface distribution of GPIbalpha because they lack the normal cytoskeletal linkage of GPIbalpha to underlying actin filaments. This results in approximately 70% less platelet coverage on collagen-coated surfaces at shear rates of 1,500/s, compared with wild-type platelets. Unexpectedly, however, immunoreceptor tyrosine-based activation motif (ITAM)- and ITAM-like-mediated signals are severely compromised in FlnA-null platelets. FlnA-null platelets fail to spread and have decreased alpha-granule secretion, integrin alphaIIbbeta3 activation, and protein tyrosine phosphorylation, particularly that of the protein tyrosine kinase Syk and phospholipase C-gamma2, in response to stimulation through the collagen receptor GPVI and the C-type lectin-like receptor 2. This signaling defect was traced to the loss of a novel FlnA-Syk interaction, as Syk binds to FlnA at immunoglobulin-like repeat 5. Our findings reveal that the interaction between FlnA and Syk regulates ITAM- and ITAM-like-containing receptor signaling and platelet function.
Resumo:
Background Chronic myeloproliferative disorders (MPDs) are clonal haematopoietic stem cell malignancies characterised by an accumulation of mature myeloid cells in bone marrow and peripheral blood. Deregulation of the apoptotic machinery may be associated with MPD physiopathology. Aims To evaluate expression of death receptors` family members, mononuclear cell apoptosis resistance, and JAK2 allele burden. Subjects and Methods Bone marrow haematopoietic progenitor CD34 cells were separated using the Ficoll-hypaque protocol followed by the Miltenyi CD34 isolation kit, and peripheral blood leukocytes were separated by the Haes-Steril method. Total RNA was extracted by the Trizol method, the High Capacity Kit was used to synthesise cDNA, and real-time PCR was performed using SybrGreen in ABIPrism 7500 equipment. The results of gene expression quantification are given as 2(-Delta Delta Ct). The JAK2 V617F mutation was detected by real-time allelic discrimination PCR assay. Peripheral blood mononuclear cells (PBMCs) were isolated by the Ficoll-hypaque protocol and cultured in the presence of apoptosis inducers. Results In CD34 cells, there was mRNA overexpression for fas, faim and c-flip in polycythaemia vera (PV), essential thrombocythaemia (ET) and primary myelofibrosis (PMF), as well as fasl in PMF, and dr4 levels were increased in ET. In leukocytes, fas, c-flip and trail levels were increased in PV, and dr5 expression was decreased in ET. There was an association between dr5 and fasl expression and JAK2V617F mutation. PBMCs from patients with PV, ET or PMF showed resistance to apoptosis inducers. Conclusions The results indicate deregulation of apoptosis gene expression, which may be associated with MPD pathogenesis leading to accumulation of myeloid cells in MPDs.
Resumo:
Neste trabalho investigou-se as características do receptor à insulina e a capacidade de captação de glicose nas brânquias do caranguejo Chasmagnathus granulata aclimatado a diferentes tempos (24, 72 e 144 horas) de estresse hiper e hiposmótico. Primeiramente, o cDNA do receptor para insulina foi parcialmente clonado e seqüenciado em brânquias posteriores de Chasmagnathus granulata. A seqüência peptídica mostrou a presença de 39 aminoácidos e foi designada CGIRLTK (C. granulata insulina receptor-like tyrosine kinase). Esta seqüência apresentou significativa homologia com o domínio tirosina quinase da subunidade b dos receptores para insulina de mamíferos (69%) e de Drosophila (74%). Sítios de ligação à insulina foram caracterizados nas membranas plasmáticas das brânquias através do estudo de ligação com 125I-insulina. A atividade tirosina quinase foi determinada pela capacidade do CGIRLTK de fosforilar o substrato sintético poly (Glu; Tyr 4:1). A captação de glicose foi avaliada pela captação de [14C] 2-deoxi-D-glicose pelo tecido branquial. Nas brânquias posteriores a insulina bovina estimulou significativamente a fosforilação do CGIRLTK nos animais aclimatados a 20‰ de salinidade (controle), já nas brânquias anteriores este estímulo não foi observado. O estresse hiperosmótico (34 ‰ de salinidade) levou a uma diminuição do número e da afinidade dos receptores à insulina nas brânquias posteriores, bem como a uma redução na atividade tirosina quinase. A captação de glicose não mudou durante os tempos de estresse osmótico estudados Esses resultados mostram que o estresse hiperosmótico modifica a sinalização da insulina, causando um estado de resistência à insulina nas brânquias posteriores. Nenhuma mudança foi observada na concentração dos receptores à insulina nas brânquias posteriores de caranguejos aclimatados durante 24 horas ao estresse hiposmótico (0‰). Contudo, foi observada uma redução na afinidade dos receptores pela insulina bovina. A fosforilação do CGIRLTK diminui às 24 horas de estresse e retornou aos valores basais às 144horas. A captação de glicose não foi alterada significativamente. Os resultados sugerem que o estresse hiposmótico modifica as características do CGIRLTK nas brânquias posteriores de C. granulata de forma tempo-dependente. Essas mudanças são parte dos ajustes necessários à sobrevivência à baixa salinidade. Nas brânquias anteriores, durante aclimatação ao estresse hiperosmótico, foi observada redução da concentração e da capacidade de fosforilação dos receptores insulínicos. Contudo, a insulina bovina não estimulou a fosforilação nas brânquias anteriores durante o estresse Nenhuma alteração foi observada na concentração e na afinidade de receptores à insulina nas brânquias anteriores após 24 horas de estresse hiposmótico. A fosforilação do receptor à insulina diminuiu após 24 horas de estresse e voltou aos valores basais após 72 horas. A capacidade de captação de glicose, por sua vez, não foi modificada em função de mudanças na osmoliridade do ambiente. Assim como no estresse hiperosmótico, a insulina bovina não estimulou a fosforilação nas brânquias anteriores no estresse hiposmótico. Os resultados deste trabalho demonstram que o estresse osmótico modifica as características do CGILRTK e conseqüentemente a transdução do sinal insulínico nas brânquias. As respostas às alterações de salinidade dependem do tipo de estresse ao qual o animal é submetido e da brânquia estudada (anterior ou posterior). As mudanças observadas no sinal insulínico fazem parte dos ajustes necessários para a regulação osmótica frente às mudanças ambientais de salinidade.
Resumo:
The use of agents targeting EGFR represents a new frontier in colon cancer therapy. Among these, monoclonal antibodies (mAbs) and EGFR tyrosine kinase inhibitors (TKIs) seemed to be the most promising. However they have demonstrated low utility in therapy, the former being effective at toxic doses, the latter resulting inefficient in colon cancer. This thesis work presents studies on a new EGFR inhibitor, FR18, a molecule containing the same naphtoquinone core as shikonin, an agent with great anti-tumor potential. In HT-29, a human colon carcinoma cell line, flow cytometry, immunoprecipitation, and Western blot analysis, confocal spectral microscopy have demonstrated that FR18 is active at concentrations as low as 10 nM, inhibits EGF binding to EGFR while leaving unperturbed the receptor kinase activity. At concentration ranging from 30 nM to 5 μM, it activates apoptosis. FR18 seems therefore to have possible therapeutic applications in colon cancer. In addition, surface plasmon resonance (SPR) investigation of the direct EGF/EGFR complex interaction using different experimental approaches is presented. A commercially available purified EGFR was immobilised by amine coupling chemistry on SPR sensor chip and its interaction to EGF resulted to have a KD = 368 ± 0.65 nM. SPR technology allows the study of biomolecular interactions in real-time and label-free with a high degree of sensitivity and specificity and thus represents an important tool for drug discovery studies. On the other hand EGF/EGFR complex interaction represents a challenging but important system that can lead to significant general knowledge about receptor-ligand interactions, and the design of new drugs intended to interfere with EGFR binding activity.
Resumo:
During central nervous system myelination, oligodendrocytes extend membrane processes towards an axonal contact site which is followed by ensheathment resulting in a compacted multilamellar myelin sheath. The formation of this axon-glial unit facilitates rapid saltatory propagation of action potentials along the axon and requires the synthesis and transport of copious amounts of lipids and proteins to the axon-glial contact site. Fyn is a member of the Src family of non receptor tyrosine kinases and inserted into the inner leaflet of the oligodendrocyte membrane by acylation. Fyn activity plays a pivotal role in the maturation of oligodendrocytes and the myelination process. It was suggested previously that Fyn kinase can be stimulated by binding of a neuronal ligand to oligodendroglial F3/ contactin, a glycosyl-phosphatidyl-inositol anchored immunoglobulin superfamily (IgSF) member protein. It could be shown here, that neuronal cell adhesion molecule L1 binds to oligodendrocytes in an F3-dependent manner and activates glial Fyn. In the search for downstream participants of this novel axon-glial signalling cascade, heterogeneous nuclear ribonucleoprotein (hnRNP) A2 was identified as a novel Fyn target in oligodendrocytes. HnRNP A2 was known to be involved in the localisation of translationally repressed myelin basic protein (MBP) mRNA by binding to a cis acting A2 response element (A2RE) present in the 3’ untranslated region. Transport of MBP mRNAs occurs in RNA-protein complexes termed RNA granules and translational repression during transport is achieved by hnRNP A2-mediated recruitment of hnRNP E1 to the granules. It could be shown here, that Fyn activity leads to enhanced translation of reporter mRNA containing a part of the 3’ UTR of MBP including the A2RE. Furthermore hnRNP E1 seems to dissociate from RNA granules in response to Fyn activity and L1 binding. These findings suggest a novel form of neuron- glial communication: Axonal L1 binding to oligodendroglial F3 activates Fyn kinase. Activated Fyn phosphorylates hnRNP A2 leading to removal of hnRNP E1 from RNA granules initiating the translation of MBP mRNA. MBP is the second most abundant myelin protein and mice lacking this protein show a severe hypomyelination phenotype. Moreover, the brains of Fyn knock out mice contain reduced MBP levels and are hypomyelinated. Hence, L1-mediated MBP synthesis via Fyn as a central molecule could be part of a regulatory mechanism required for myelinogenesis in the central nervous system.
Resumo:
FGFRL1 (fibroblast growth factor receptor like 1) is the fifth and most recently discovered member of the fibroblast growth factor receptor (FGFR) family. With up to 50% amino acid similarity, its extracellular domain closely resembles that of the four conventional FGFRs. Its intracellular domain, however, lacks the split tyrosine kinase domain needed for FGF-mediated signal transduction. During embryogenesis of the mouse, FGFRL1 is essential for the development of parts of the skeleton, the diaphragm muscle, the heart, and the metanephric kidney. Since its discovery, it has been hypothesized that FGFRL1 might act as a decoy receptor for FGF ligands. Here we present several lines of evidence that support this notion. We demonstrate that the FGFRL1 ectodomain is shed from the cell membrane of differentiating C2C12 myoblasts and from HEK293 cells by an as yet unidentified protease, which cuts the receptor in the membrane-proximal region. As determined by ligand dot blot analysis, cell-based binding assays, and surface plasmon resonance analysis, the soluble FGFRL1 ectodomain as well as the membrane-bound receptor are capable of binding to some FGF ligands with high affinity, including FGF2, FGF3, FGF4, FGF8, FGF10, and FGF22. We furthermore show that ectopic expression of FGFRL1 in Xenopus embryos antagonizes FGFR signaling during early development. Taken together, our data provide strong evidence that FGFRL1 is indeed a decoy receptor for FGFs.
Resumo:
FGFRL1 (fibroblast growth factor receptor like 1) is the most recently discovered member of the FGFR family. It contains three extracellular Ig-like domains similar to the classical FGFRs, but it lacks the protein tyrosine kinase domain and instead contains a short intracellular tail with a peculiar histidine-rich motif. The gene for FGFRL1 is found in all metazoans from sea anemone to mammals. FGFRL1 binds to FGF ligands and heparin with high affinity. It exerts a negative effect on cell proliferation, but a positive effect on cell differentiation. Mice with a targeted deletion of the Fgfrl1 gene die perinatally due to alterations in their diaphragm. These mice also show bilateral kidney agenesis, suggesting an essential role for Fgfrl1 in kidney development. A human patient with a frameshift mutation exhibits craniosynostosis, arguing for an additional role of FGFRL1 during bone formation. FGFRL1 contributes to the complexity of the FGF signaling system.
Resumo:
Brain tumors comprise a wide variety of neoplasia classified according to their cellular origin and their morphological and histological characteristics. The transformed phenotype of brain tumor cells has been extensively studied in the past years, achieving a significant progress in our understanding of the molecular pathways leading to tumorigenesis. It has been reported that the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway is frequently altered in grade IV brain tumors resulting in uncontrolled cell growth, survival, proliferation, angiogenesis, and migration. This aberrant activation can be explained by oncogenic mutations in key components of the pathway or through abnormalities in its regulation. These alterations include overexpression and mutations of receptor tyrosine kinases (RTKs), mutations and deletions of the phosphatase and tensin homologue deleted on chromosome 10 (PTEN) tumor suppressor gene, encoding a lipid kinase that directly antagonized PI3K activity, and alterations in Ras signaling. Due to promising results of preclinical studies investigating the PI3K/AKT pathway in grade IV brain tumors like glioblastoma and medulloblastoma, the components of this pathway have emerged as promising therapeutic targets to treat these malignant brain tumors. Although an arsenal of small molecule inhibitors that target specific components of this signaling pathway is being developed, its successful application in the clinics remains a challenge. In this article we will review the molecular basis of the PI3K/AKT signaling pathway in malignant brain tumors, mainly focusing on glioblastoma and medulloblastoma, and we will further discuss the current status and potential of molecular targeted therapies.
Resumo:
Lung cancer is the leading cause of cancer-related mortality worldwide and more than 1 million people annually die in consequence of lung cancer. Although an improvement in lung cancer treatment could be achieved, especially in the last decade, the development of additional therapeutic strategies is urgently required in order to provide improved survival benefit for patients. Lung cancer formation is caused by genetic modifications commonly caused by tobacco smoking. Numerous studies have demonstrated the role of extracellular growth factors in lung cancer cell proliferation, metastasis, and chemoresistance. Mutations and amplifications in molecules related to receptor tyrosine signalling, such as EGFR, ErbB2, c-Met, c-Kit, VEGFR, PI3K, and PTEN are only some of the alterations known to contribute to the development of lung cancer. The phosphoinositide 3-kinase (PI3K) pathway, fundamental for cell development, growth, and survival, is known to be frequently altered in neoplasia, including carcinomas of the lung. Based on the high frequency of alterations, which include mutations and amplifications, leading to over-activation of certain upstream/downstream mediators, targeting components of the PI3K signalling pathway is considered to be a promising therapeutic approach in cancer treatment. In this article we will summarize the current knowledge about the involvement of PI3K signalling in lung cancer and discuss the development of targeted therapies involving PI3K pathway inhibitors.
Resumo:
Deregulation of receptor tyrosine kinases (RTKs) is linked to a broad range of cancers, stressing the necessity of studying their regulatory pathways. We and others demonstrated previously that c-Cbl is necessary for the lysosomal degradation of erythropoietin-producing hepatocellular B1 (EphB1) carcinoma and epidermal growth factor receptor (EGFR) RTKs. Moreover, the tumor suppressor phosphatase and tensin homolog (PTEN) was shown to modulate c-Cbl-dependent EGFR degradation. We therefore investigated the involvement of PTEN in EphB1 signaling and degradation. We used PTEN mutants, PTEN, and NHERF1 small interfering RNA in CHO-EphB1 and SW480 cells endogenously expressing EphB1 to delineate EphB1-PTEN interactions. PTEN was constitutively associated with c-Cbl, protecting it from degradation. EphB1 stimulation triggered ∼50% serine-threonine PTEN dephosphorylation and PTEN-Cbl complex disruption, a process requiring PTEN protein phosphatase activity. Both proteins independently translocated to EphB1, with PTEN in association with the scaffold protein NHERF1. Biologically, PTEN lipid phosphatase activity impairs EphB1-dependent cell adhesion and chemotaxis. This study demonstrates for the first time in mammalian cells that the Eph receptor and PTEN associate and influence their signaling. Moreover, it contributes to the emerging concept that PTEN regulates expression of RTKs through modulation of their degradation. Finally, it reveals a new role for PTEN protein phosphatase activity involved in this process.
Resumo:
Recent studies have implied that GPIb-IX-V as well as functioning as an adhesion receptor may also induce signaling to mediate binding of platelets to damaged vessel wall to prevent bleeding. Reorganization of the cytoskeleton and redistribution of platelet structural proteins and signaling molecules are thought to be important in this early activation process, though the molecular mechanisms remain to be fully defined. In this study, we have used mucetin, a snake venom lectin protein that activates platelets via GPIb, to study the redistribution of GPIb in platelets. In unstimulated platelets, a minor portion of GPIb localized to Triton-insoluble cytoskeleton fractions (TIC). This portion increased considerably after platelet activation by mucetin. We also find increased contents of the FcRgamma chain in TIC. Anti-GPIb antibodies, mocarhagin or cytochalasin D completely inhibited the cytoskeletal translocation. In addition, BAPTA-AM, a cytoplasmic calcium chelator, strongly inhibited this process. On the other hand, inhibitors of alphaIIbbeta3, PLCgamma, PKC, tyrosine kinases, ADP receptor, PI3-kinase or EDTA are effective in preventing GPIb relocation in convulxin- but not in mucetin-activated platelets. We propose that cytoskeletal translocation of GPIb is upstream of alphaIIbbeta3 activation and cross-linking of GPIb is sufficient to induce this event in mucetin-activated platelets.
Resumo:
Convulxin, a powerful platelet activator, was isolated from Crotalus durissus terrificus venom, and 20 amino acid N-terminal sequences of both subunits were determined. These indicated that convulxin belongs to the heterodimeric C-type lectin family. Neither antibodies against GPIb nor echicetin had any effect on convulxin-induced platelet aggregation showing that, in contrast to other venom C-type lectins acting on platelets, GPIb is not involved in convulxin-induced platelet activation. In addition, partially reduced/denatured convulxin only affects collagen-induced platelet aggregation. The mechanism of convulxin-induced platelet activation was examined by platelet aggregation, detection of time-dependent tyrosine phosphorylation of platelet proteins, and binding studies with 125I-convulxin. Convulxin induces signal transduction in part like collagen, involving the time-dependent tyrosine phosphorylation of Fc receptor gamma chain, phospholipase Cgamma2, p72(SYK), c-Cbl, and p36-38. However, unlike collagen, pp125(FAK) and some other bands are not tyrosine-phosphorylated. Convulxin binds to a glycosylated 62-kDa membrane component in platelet lysate and to p62/GPVI immunoprecipitated by human anti-p62/GPVI antibodies. Convulxin subunits inhibit both aggregation and tyrosine phosphorylation in response to collagen. Piceatannol, a tyrosine kinase inhibitor with some specificity for p72(SYK), showed differential effects on collagen and convulxin-stimulated signaling. These results suggest that convulxin uses the p62/GPVI but not the alpha2beta1 part of the collagen signaling pathways to activate platelets. Occupation and clustering of p62/GPVI may activate Src family kinases phosphorylating Fc receptor gamma chain and, by a mechanism previously described in T- and B-cells, activate p72(SYK) that is critical for downstream activation of platelets.
Resumo:
Accumulating experimental evidence indicates that endothelial cell growth and blood vessel morphogenesis are processes that are governed by the activity of specifically expressed receptor tyrosine kinases (RTKs). We have used two new rat monoclonal antibodies (mAbs) to study the expression and phosphorylation of one such receptor, mouse Tie2 (tyrosine kinase that contains immunoglobulin-like loops and epidermal-growth-factor-similar domains 2]), in transfected cells, endothelioma cell lines and mouse tissues. The Tie2 receptor was found to be constitutively autophosphorylated when over-expressed in COS7 cells. In contrast, the endogenous Tie2 protein was not phosphorylated in endothelioma cell lines. However, in these cell lines, Tie2 could be induced to become tyrosine phosphorylated, and this activation was found to be independent of Tie1. Studying Tie2 receptor activity during angiogenesis in mouse development, the receptor was only weakly phosphorylated in the early postnatal mouse brain whereas a stronger activation could be detected in mouse embryos at day 10.5 post coitum.