963 resultados para Electrostatic precipitation
Resumo:
Introduction: In this study, colloidal gold nanoparticle and precipitation of an insoluble product formed by HRP-biocatalyzed oxidation of 3,3'-diaminobenzidine (DAB) in the presence of H2O2 were used to enhance the signal obtained from the surface plasmon resonance biosensor.
Methods: The colloidal gold nanoparticle was synthesized as described by Turkevitch et al., and their surface was firstly functionalized with HS(CH2)11(OCH2CH2)3COOH (OEG3¬-COOH) by self assembling technique. Thereafter, those OEG3-COOH functionalized nanoparticles were covalently conjugated with horseradish peroxidase (HRP) and anti-IgG antibody (specific to the Fc portion of all human IgG subclasses) to form an enzyme-immunogold complex. Characterization was performed by several methods: UV-Vis absorption, dynamic light scattering (DLS), transmission electron microscopy (TEM) and FTIR. The as-prepared enzyme-immunogold complex has been applied in enhancement of SPR immunoassay. A sensor chip used in the experiment was constructed by using 1:10 molar ratio of HS(CH2)11(OCH2CH2)6COOH and HS(CH2)11(OCH2CH2)3OH. The capture protein, GAD65 (autoantigen) which is recognized by anti-GAD antibody (autoantibody) in the sera of insulin-dependent diabetes mellitus patients, was immobilized onto the 1:10 surface via biotin-streptavidin interaction.
Results and conclusions: In the research, we reported the influences of gold nanoparticle and enzyme precipitation on the enhancement of SPR signal. Gold nanoparticle showed its enhancement as being consistent with other previous studies, while the enzyme precipitation using DAB substrate was applied for the first time and greatly amplified the SPR detection. As the results, anti-GAD antibody could be detected at pg/ml level which is far higher than that of commercial ELISA detection kit. This study indicates another way to enhance SPR measurement, and it is generally applicable to other SPR-based immunoassays.
Resumo:
Desiccation crack formation is a key process that needs to be understood in assessment of landfill cap performance under anticipated future climate change scenarios. The objectives of this study were to examine: (a) desiccation cracks and impacts that roots may have on their formation and resealing, and (b) their impacts on hydraulic conductivity under anticipated climate change precipitation scenarios. Visual observations, image analysis of thin sections and hydraulic conductivity tests were carried out on cores collected from two large-scale laboratory trial landfill cap models (∼80 × 80 × 90 cm) during a year of four simulated seasonal precipitation events. Extensive root growth in the topsoil increased percolation of water into the subsurface, and after droughts, roots grew deep into low-permeability layers through major cracks which impeded their resealing. At the end of 1 year, larger cracks had lost resealing ability and one single, large, vertical crack made the climate change precipitation model cap inefficient. Even though the normal precipitation model had developed desiccation cracks, its integrity was preserved better than the climate change precipitation model.
Resumo:
Electrostatic solitary waves in plasmas are the focus of many current studies of localized electrostatic disturbances in both laboratory and astrophysical plasmas. Motivated by recent experimental observations, in which electrostatic solitary structures were detected in laser-plasma experiments, we have undertaken an investigation of the nonlinear dynamics of plasma evolving in two dimensions, in the presence of excess superthermal background electrons. We investigate the effect of a magnetic field on weakly nonlinear ion-acoustic waves. Deviation from the Maxwellian distribution is effectively modelled by the kappa model. A linear dispersion relation is derived, and a decrease in frequency and phase speed in both parallel and perpendicular modes can be seen, which is due to excess superthermal electrons, and which is stronger in the upper mode, and hardly noticeable in the lower (acoustic) mode. We show that ion-acoustic solitary waves can be generated during the nonlinear evolution of a plasma fluid, and their nonlinear propagation is governed by a Zakharov-Kuznetsov (ZK) type equation. A multiple scales perturbation technique is used to derive the ZK equation. Shock excitations can be produced if we allow for dissipation in the model, resulting in a Zakharov-Kuznetsov Burgers type equation. Different types of shock solutions and solitary waves are obtained, depending on the relation between the system parameters, and the effect of these on electrostatic shock structures is investigated numerically. A parametric investigation is conducted into the role of plasma nonthermality and magnetic field strength. © 2013 IOP Publishing Ltd.
Resumo:
Superficially, electrostatic potential profiles of supersolitons look like those of traditional solitons. However, their electric field profiles are markedly different, having additional extrema on the wings of the standard bipolar structure. This new concept was recently pointed out in the literature for a plasma model with five species. Here, it is shown that electrostatic supersolitons are not an artefact of exotic, complicated plasma models, but can exist even in three-species plasmas and are likely to occur in space plasmas. Further, a methodology is given to delineate their existence domains in a systematic fashion by determining the specific limiting factors. © 2013 American Institute of Physics.
Resumo:
We demonstrate a method for tailoring local mechanical properties near channel surfaces of vascular structural polymers in order to achieve high structural performance in microvascular systems. While synthetic vascularized materials have been created by a variety of manufacturing techniques, unreinforced microchannels act as stress concentrators and lead to the initiation of premature failure. Taking inspiration from biological tissues such as dentin and bone, these mechanical deficiencies can be mitigated by complex hierarchical structural features near to channel surfaces. By employing electrostatic layer-by-layer assembly (ELbL) to deposit films containing halloysite nanotubes onto scaffold surfaces followed by matrix infiltration and scaffold removal, we are able to controllably deposit nanoscale reinforcement onto 200 micron diameter channel surface interiors in microvascular networks. High resolution strain measurements on reinforced networks under load verify that the halloysite reduces strain concentrations and improves mechanical performance.
Resumo:
The formation of unmagnetized electrostatic shock-like structures with a high Mach number is examined with one- and two-dimensional particle-in-cell (PIC) simulations. The structures are generated through the collision of two identical plasma clouds, which consist of equally hot electrons and ions with a mass ratio of 250. The Mach number of the collision speed with respect to the initial ion acoustic speed of the plasma is set to 4.6. This high Mach number delays the formation of such structures by tens of inverse ion plasma frequencies. A pair of stable shock-like structures is observed after this time in the 1D simulation, which gradually evolve into electrostatic shocks. The ion acoustic instability, which can develop in the 2D simulation but not in the 1D one, competes with the nonlinear process that gives rise to these structures. The oblique ion acoustic waves fragment their electric field. The transition layer, across which the bulk of the ions change their speed, widens and their speed change is reduced. Double layer-shock hybrid structures develop.
Resumo:
A fluid model is used to describe the propagation of envelope structures in an ion plasma under the influence of the action of weakly relativistic electrons and positrons. A multiscale perturbative method is used to derive a nonlinear Schrödinger equation for the envelope amplitude. Criteria for modulational instability, which occurs for small values of the carrier wavenumber (long carrier wavelengths), are derived. The occurrence of rogue waves is briefly discussed. © Cambridge University Press 2013.
Resumo:
Electrostatic solitary waves in plasmas are the focus of many current studies of localized electrostatic disturbances in both laboratory and astrophysical plasmas. Here, an investigation of the nonlinear dynamics of plasma evolving in two dimensions, in the presence of excess superthermal background electrons and positrons, is undertaken. We investigate the effect of a magnetic field on weakly nonlinear ion acoustic waves. Deviation from the Maxwellian distribution is effectively modelled by the kappa model. A linear dispersion relation is derived, and a decrease in frequency and phase speed in both parallel and perpendicular modes can be seen, when the proportion of positrons to electrons increases. We show that ion acoustic solitary waves can be generated during the nonlinear evolution of a plasma fluid, and their nonlinear propagation is governed by a Zakharov-Kuznetsov (ZK) type equation. A multiple scales perturbation technique is used to derive the ZK equation. The solitary wave structures are dependent on the relation between the system parameters, specifically the superthermality of the system, the proportion of positron content, magnetic field strength, and the difference between electron and positron temperature. The parametric effect of these on electrostatic shock structures is investigated. In particular, we find that stronger superthermality leads to narrower excitations with smaller potential amplitudes. Increased positron concentration also suppresses both the amplitude and the width of solitary wave structures. However, the structures are only weakly affected by temperature differentials between electrons and positrons in our model. © 2013 AIP Publishing LLC.
Resumo:
The occurrence of rogue waves (freak waves) associated with electrostatic wavepacket propagation in a quantum electron-positron-ion plasma is investigated from first principles. Electrons and positrons follow a Fermi-Dirac distribution, while the ions are subject to a quantum (Fermi) pressure. A fluid model is proposed and analyzed via a multiscale technique. The evolution of the wave envelope is shown to be described by a nonlinear Schrödinger equation (NLSE). Criteria for modulational instability are obtained in terms of the intrinsic plasma parameters. Analytical solutions of the NLSE in the form of envelope solitons (of the bright or dark type) and localized breathers are reviewed. The characteristics of exact solutions in the form of the Peregrine soliton, the Akhmediev breather and the Kuznetsov-Ma breather are proposed as candidate functions for rogue waves (freak waves) within the model. The characteristics of the latter and their dependence on relevant parameters (positron concentration and temperature) are investigated. © 2014 IOP Publishing Ltd.
Resumo:
The collision of two plasma clouds at a speed that exceeds the ion acoustic speed can result in the formation of shocks. This phenomenon is observed not only in astrophysical scenarios, such as the propagation of supernova remnant (SNR) blast shells into the interstellar medium, but also in laboratory-based laser-plasma experiments. These experiments and supporting simulations are thus seen as an attractive platform for small-scale reproduction and study of astrophysical shocks in the laboratory. We model two plasma clouds, which consist of electrons and ions, with a 2D particle-in-cell simulation. The ion temperatures of both clouds differ by a factor of ten. Both clouds collide at a speed that is realistic for laboratory studies and for SNR shocks in their late evolution phase, like that of RCW86. A magnetic field, which is orthogonal to the simulation plane, has a strength that is comparable to that of SNR shocks. A forward shock forms between the overlap layer of both plasma clouds and the cloud with cooler ions. A large-amplitude ion acoustic wave is observed between the overlap layer and the cloud with hotter ions. It does not steepen into a reverse shock because its speed is below the ion acoustic speed. A gradient of the magnetic field amplitude builds up close to the forward shock as it compresses the magnetic field. This gradient gives rise to an electron drift that is fast enough to trigger an instability. Electrostatic ion acoustic wave turbulence develops ahead of the shock, widens its transition layer, and thermalizes the ions, but the forward shock remains intact. © 2014 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
Resumo:
A self-consistent relativistic two-fluid model is proposed for electron-ion plasma dynamics. A one-dimensional geometry is adopted. Electrons are treated as a relativistically degenerate fluid, governed by an appropriate equation of state. The ion fluid is also allowed to be relativistic, but is cold, nondegenerate, and subject only to an electrostatic potential. Exact stationary-profile solutions are sought, at the ionic scale, via the Sagdeev pseudopotential method. The analysis provides the pulse existence region, in terms of characteristic relativistic parameters, associated with the (ultrahigh) particle density.
Resumo:
A series of numerical simulations based on a recurrence-free Vlasov kinetic model using kinetic phase point trajectories are presented. Electron-ion plasmas and three-component (electron-ion-dust) dusty or complex plasmas are considered, via independent simulations. Considering all plasma components modeled through a kinetic approach, the linear and nonlinear behavior of ion-acoustic excitations is investigated. Maxwellian and kappa-type (superthermal) distribution functions are assumed, as initial conditions, in separate simulations for the sake of comparison. The focus is on the parametric dependence of ion-acoustic waves on the electron-to-ion temperature ratio and on the dust concentration. © 2014 EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg.