957 resultados para Elastic instability


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to describe, interpret and compare the EMG activation patterns of ankle muscles - tibialis anterior (TA), peroneus longus (PL) and gastrocnemius lateralis (GL) - in volleyball players with and without ankle functional instability (FI) during landing after the blocking movement. Twenty-one players with FI (IG) and 19 controls (CG) were studied. The cycle of movement analyzed was the time period between 200 ms before and 200 ms after the time of impact determined by ground reaction forces. The variables were analyzed for two different phases: pre-landing (200 ms before impact) and post-landing (200 ms after impact). The RMS values and the timing of onset activity were calculated for the three studied muscles, in both periods and for both groups. The co-activation index for TA and PL, TA and GL were also calculated. Individuals with FI presented a lower RMS value pre-landing for PL (CG = 43.0 perpendicular to 22.0; IG = 26.2 perpendicular to 8.4, p < 0.05) and higher RMS value post-landing (CG = 47.5 perpendicular to 13.3; IG = 55.8 perpendicular to 21.6, p < 0.10). Besides that, in control group PL and GL activated first and simultaneously, and TA presented a later activation, while in subjects with FI all the three muscles activated simultaneously. There were no significant differences between groups for co-activation index. Thus, the rate of contraction between agonist and antagonist muscles is similar for subjects with and without FI but the activation individually was different. Volleyball players with functional instability of the ankle showed altered patterns of the muscles that play an important role in the stabilization of the foot-ankle complex during the performance of the blocking movement, to the detriment of the ligament complex, and this fact could explain the usual complaints in these subjects. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a system formed by an infinite viscous liquid layer with a constant horizontal temperature gradient and a basic nonlinear bulk velocity profile. In the limit of long wavelength and large nondimensional surface tension we show that hydrothermal surface-wave instabilities may give rise to disturbances governed by the Kuramoto-Sivashinsky equation. A possible connection to hot-wire experiments is also discussed. © 1994.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using the long-wave approximation, a system of coupled evolutions equations for the bulk velocity and the surface perturbations of a Bénard-Marangoni system is obtained. It includes nonlinearity, dispersion and dissipation, and it is interpreted as a dissipative generalization of the usual Boussinesq system of equations. Then, by considering that the Marangoni number is near the critical value M = -12, we show that the modulation of the Boussinesq waves is described by a perturbed Nonlinear Schrödinger Equation, and we study the conditions under which a Benjamin-Feir instability could eventually set in. The results give sufficient conditions for stability, but are inconclusive about the existence or not of a Benjamin-Feir instability in the long-wave limit. © 1995.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flutter is an in-flight vibration of flexible structures caused by energy in the airstream absorbed by the lifting surface. This aeroelastic phenomenon is a problem of considerable interest in the aeronautic industry, because flutter is a potentially destructive instability resulting from an interaction between aerodynamic, inertial, and elastic forces. To overcome this effect, it is possible to use passive or active methodologies, but passive control adds mass to the structure and it is, therefore, undesirable. Thus, in this paper, the goal is to use linear matrix inequalities (LMIs) techniques to design an active state-feedback control to suppress flutter. Due to unmeasurable aerodynamic-lag states, one needs to use a dynamic observer. So, LMIs also were applied to design a state-estimator. The simulated model, consists of a classical flat plate in a two-dimensional flow. Two regulators were designed, the first one is a non-robust design for parametric variation and the second one is a robust control design, both designed by using LMIs. The parametric uncertainties are modeled through polytopic uncertainties. The paper concludes with numerical simulations for each controller. The open-loop and closed-loop responses are also compared and the results show the flutter suppression. The perfomance for both controllers are compared and discussed. Copyright © 2006 by ABCM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wood is generally considered an anisotropic material. In terms of engineering elastic models, wood is usually treated as an orthotropic material. This paper presents an analysis of two principal anisotropic elastic models that are usually applied to wood. The first one, the linear orthotropic model, where the material axes L (Longitudinal), R(radial) and T(tangential) are coincident with the Cartesian axes (x, y, z), is more accepted as wood elastic model. The other one, the cylindrical orthotropic model is more adequate of the growth caracteristics of wood but more mathematically complex to be adopted in practical terms. Specifically due to its importance in wood elastic parameters, this paper deals with the fiber orientation influence in these models through adequate transformation of coordinates. As a final result, some examples of the linear model, which show the variation of elastic moduli, i.e., Young's modulus and shear modulus, with fiber orientation are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 16-year-old girl presented with complaints of recurrent spontaneous pain in the mandibular second molar region. Treatment favored use of a simple uprighting technique involving orthodontic elastic separating rings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Actinic cheilitis (AC) is a premalignant condition intimately related to exposure of the lips to sun rays. Aim: The objective of this study was to evaluate the elastic and collagen fibers in the lamina propria of AC. The degree of epithelial atypia was correlated with the quantity of elastic and collagen fibers. Materials and Methods: Fifty-one cases were investigated. One slide was stained with hematoxylin-eosin for the evaluation of atypia, the second was stained with Weigert′s resorcin-fuchsin for the assessment of elastic fibers, and the third slide was stained with Mallory′s trichrome for the analysis of collagen fibers. Results: Ordinal logistic regression analysis revealed a significant correlation between the presence of atypia and collagen fibers (P<0.05). Conclusions: It was concluded that there seems to be a reduction in the quantity of collagen fibers in cases of moderate and severe atypia. No correlation was observed between the degradation of elastic system fibers and the grade of dysplasia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous researchers have studied about nonlinear dynamics in several areas of science and engineering. However, in most cases, these concepts have been explored mainly from the standpoint of analytical and computational methods involving integer order calculus (IOC). In this paper we have examined the dynamic behavior of an elastic wide plate induced by two electromagnets of a point of view of the fractional order calculus (FOC). The primary focus of this study is on to help gain a better understanding of nonlinear dynamic in fractional order systems. © 2011 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents an application of a Boundary Element Method (BEM) formulation for anisotropic body analysis using isotropic fundamental solution. The anisotropy is considered by expressing a residual elastic tensor as the difference of the anisotropic and isotropic elastic tensors. Internal variables and cell discretization of the domain are considered. Masonry is a composite material consisting of bricks (masonry units), mortar and the bond between them and it is necessary to take account of anisotropy in this type of structure. The paper presents the formulation, the elastic tensor of the anisotropic medium properties and the algebraic procedure. Two examples are shown to validate the formulation and good agreement was obtained when comparing analytical and numerical results. Two further examples in which masonry walls were simulated, are used to demonstrate that the presented formulation shows close agreement between BE numerical results and different Finite Element (FE) models. © 2012 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Includes bibliography