984 resultados para Effectiveness Estimation
Resumo:
Triggered by highly publicized corporate scandals, changing societal expectations and the collapse of financial markets, the roles of boards of directors have changed significantly in safeguarding the interest of shareholders and other stakeholders. Yet relatively little is known about contemporary challenges non-executive directors face and whether their boards are well-equipped for their new tasks. Based on self-assessment reports by supervisory boards, a survey and interviews with supervisory board members, this paper investigates the challenges non-executive directors face in the Netherlands, particularly after a decade of corporate governance reform. Non-executive directors’ inadequate role in scrutinizing executive directors’ performance, information asymmetries and dysfunctional working relationships between executive and non-executive directors are among the greatest challenges indicated by non-executive directors on Dutch supervisory boards. The paper discusses several implications for scholars and practitioners and provides a unique insight in boardroom dynamics (word count: 138).
Resumo:
Background Total hip arthroplasty (THA) is a commonly performed procedure and numbers are increasing with ageing populations. One of the most serious complications in THA are surgical site infections (SSIs), caused by pathogens entering the wound during the procedure. SSIs are associated with a substantial burden for health services, increased mortality and reduced functional outcomes in patients. Numerous approaches to preventing these infections exist but there is no gold standard in practice and the cost-effectiveness of alternate strategies is largely unknown. Objectives The aim of this project was to evaluate the cost-effectiveness of strategies claiming to reduce deep surgical site infections following total hip arthroplasty in Australia. The objectives were: 1. Identification of competing strategies or combinations of strategies that are clinically relevant to the control of SSI related to hip arthroplasty 2. Evidence synthesis and pooling of results to assess the volume and quality of evidence claiming to reduce the risk of SSI following total hip arthroplasty 3. Construction of an economic decision model incorporating cost and health outcomes for each of the identified strategies 4. Quantification of the effect of uncertainty in the model 5. Assessment of the value of perfect information among model parameters to inform future data collection Methods The literature relating to SSI in THA was reviewed, in particular to establish definitions of these concepts, understand mechanisms of aetiology and microbiology, risk factors, diagnosis and consequences as well as to give an overview of existing infection prevention measures. Published economic evaluations on this topic were also reviewed and limitations for Australian decision-makers identified. A Markov state-transition model was developed for the Australian context and subsequently validated by clinicians. The model was designed to capture key events related to deep SSI occurring within the first 12 months following primary THA. Relevant infection prevention measures were selected by reviewing clinical guideline recommendations combined with expert elicitation. Strategies selected for evaluation were the routine use of pre-operative antibiotic prophylaxis (AP) versus no use of antibiotic prophylaxis (No AP) or in combination with antibiotic-impregnated cement (AP & ABC) or laminar air operating rooms (AP & LOR). The best available evidence for clinical effect size and utility parameters was harvested from the medical literature using reproducible methods. Queensland hospital data were extracted to inform patients’ transitions between model health states and related costs captured in assigned treatment codes. Costs related to infection prevention were derived from reliable hospital records and expert opinion. Uncertainty of model input parameters was explored in probabilistic sensitivity analyses and scenario analyses and the value of perfect information was estimated. Results The cost-effectiveness analysis was performed from a health services perspective using a hypothetical cohort of 30,000 THA patients aged 65 years. The baseline rate of deep SSI was 0.96% within one year of a primary THA. The routine use of antibiotic prophylaxis (AP) was highly cost-effective and resulted in cost savings of over $1.6m whilst generating an extra 163 QALYs (without consideration of uncertainty). Deterministic and probabilistic analysis (considering uncertainty) identified antibiotic prophylaxis combined with antibiotic-impregnated cement (AP & ABC) to be the most cost-effective strategy. Using AP & ABC generated the highest net monetary benefit (NMB) and an incremental $3.1m NMB compared to only using antibiotic prophylaxis. There was a very low error probability that this strategy might not have the largest NMB (<5%). Not using antibiotic prophylaxis (No AP) or using both antibiotic prophylaxis combined with laminar air operating rooms (AP & LOR) resulted in worse health outcomes and higher costs. Sensitivity analyses showed that the model was sensitive to the initial cohort starting age and the additional costs of ABC but the best strategy did not change, even for extreme values. The cost-effectiveness improved for a higher proportion of cemented primary THAs and higher baseline rates of deep SSI. The value of perfect information indicated that no additional research is required to support the model conclusions. Conclusions Preventing deep SSI with antibiotic prophylaxis and antibiotic-impregnated cement has shown to improve health outcomes among hospitalised patients, save lives and enhance resource allocation. By implementing a more beneficial infection control strategy, scarce health care resources can be used more efficiently to the benefit of all members of society. The results of this project provide Australian policy makers with key information about how to efficiently manage risks of infection in THA.
Resumo:
Motor unit number estimation (MUNE) is a method which aims to provide a quantitative indicator of progression of diseases that lead to loss of motor units, such as motor neurone disease. However the development of a reliable, repeatable and fast real-time MUNE method has proved elusive hitherto. Ridall et al. (2007) implement a reversible jump Markov chain Monte Carlo (RJMCMC) algorithm to produce a posterior distribution for the number of motor units using a Bayesian hierarchical model that takes into account biological information about motor unit activation. However we find that the approach can be unreliable for some datasets since it can suffer from poor cross-dimensional mixing. Here we focus on improved inference by marginalising over latent variables to create the likelihood. In particular we explore how this can improve the RJMCMC mixing and investigate alternative approaches that utilise the likelihood (e.g. DIC (Spiegelhalter et al., 2002)). For this model the marginalisation is over latent variables which, for a larger number of motor units, is an intractable summation over all combinations of a set of latent binary variables whose joint sample space increases exponentially with the number of motor units. We provide a tractable and accurate approximation for this quantity and also investigate simulation approaches incorporated into RJMCMC using results of Andrieu and Roberts (2009).
Resumo:
Sleep-related and fatigue-related driving is an important contributory factor in fatal and serious injury crashes - Accounts for approx 19% - Similar in magnitude to drink driving
Resumo:
Background/objectives This study estimates the economic outcomes of a nutrition intervention to at-risk patients compared with standard care in the prevention of pressure ulcer. Subjects/methods Statistical models were developed to predict ‘cases of pressure ulcer avoided’, ‘number of bed days gained’ and ‘change to economic costs’ in public hospitals in 2002–2003 in Queensland, Australia. Input parameters were specified and appropriate probability distributions fitted for: number of discharges per annum; incidence rate for pressure ulcer; independent effect of pressure ulcer on length of stay; cost of a bed day; change in risk in developing a pressure ulcer associated with nutrition support; annual cost of the provision of a nutrition support intervention for at-risk patients. A total of 1000 random re-samples were made and the results expressed as output probability distributions. Results The model predicts a mean 2896 (s.d. 632) cases of pressure ulcer avoided; 12 397 (s.d. 4491) bed days released and corresponding mean economic cost saving of euros 2 869 526 (s.d. 2 078 715) with a nutrition support intervention, compared with standard care. Conclusion Nutrition intervention is predicted to be a cost-effective approach in the prevention of pressure ulcer in at-risk patients.
Resumo:
This paper proposes a new approach for state estimation of angles and frequencies of equivalent areas in large power systems with synchronized phasor measurement units. Defining coherent generators and their correspondent areas, generators are aggregated and system reduction is performed in each area of inter-connected power systems. The structure of the reduced system is obtained based on the characteristics of the reduced linear model and measurement data to form the non-linear model of the reduced system. Then a Kalman estimator is designed for the reduced system to provide an equivalent dynamic system state estimation using the synchronized phasor measurement data. The method is simulated on two test systems to evaluate the feasibility of the proposed method.
Resumo:
The objective of the study was to assess, from a health service perspective, whether a systematic program to modify kidney and cardiovascular disease reduced the costs of treating end-stage kidney failure. The participants in the study were 1,800 aboriginal adults with hypertension, diabetes with microalbuminuria or overt albuminuria, and overt albuminuria, living on two islands in the Northern Territory of Australia during 1995 to 2000. Perindopril was the primary treatment agent, and other medications were also used to control blood pressure. Control of glucose and lipid levels were attempted, and health education was offered. Evaluation of program resource use and costs for follow-up periods was done at 3 and 4.7 years. On an intention-to-treat basis, the number of dialysis starts and dialysis-years avoided were estimated by comparing the fate of the treatment group with that of historical control subjects, matched for disease severity, who were followed in the before the treatment program began. For the first three years, an estimated 11.6 person-years of dialysis were avoided, and over 4.7 years, 27.7 person-years of dialysis were avoided. The net cost of the program was 1,210 dollars more per person per year than status quo care, and dialyses avoided gave net savings of 1.0 million dollars at 3 years and 3.4 million dollars at 4.6 years. The treatment program provided significant health benefit and impressive cost savings in dialysis avoided.
Resumo:
Despite the prominent use of the Suchey-Brooks (S-B) method of age estimation in forensic anthropological practice, it is subject to intrinsic limitations, with reports of differential inter-population error rates between geographical locations. This study assessed the accuracy of the S-B method to a contemporary adult population in Queensland, Australia and provides robust age parameters calibrated for our population. Three-dimensional surface reconstructions were generated from computed tomography scans of the pubic symphysis of male and female Caucasian individuals aged 15–70 years (n = 195) in Amira® and Rapidform®. Error was analyzed on the basis of bias, inaccuracy and percentage correct classification for left and right symphyseal surfaces. Application of transition analysis and Chi-square statistics demonstrated 63.9% and 69.7% correct age classification associated with the left symphyseal surface of Australian males and females, respectively, using the S-B method. Using Bayesian statistics, probability density distributions for each S-B phase were calculated, providing refined age parameters for our population. Mean inaccuracies of 6.77 (±2.76) and 8.28 (±4.41) years were reported for the left surfaces of males and females, respectively; with positive biases for younger individuals (<55 years) and negative biases in older individuals. Significant sexual dimorphism in the application of the S-B method was observed; and asymmetry in phase classification of the pubic symphysis was a frequent phenomenon. These results recommend that the S-B method should be applied with caution in medico-legal death investigations of Queensland skeletal remains and warrant further investigation of reliable age estimation techniques.
Resumo:
Background: Daylight availability data are essential for designing effectively day lighted buildings. In respect to no available daylight availability data in Iran, illuminance data on the south facing vertical surfaces were estimated using a proper method. Methods: An illuminance measuring set was designed for measuring vertical illuminances for standard times over 15 days at one hour intervals from 9 a.m. to 3 p.m. at three measuring stations (Hamadan, Eshtehard and Kerman). Measuring data were used to confirm predicted by the IESNA method. Results: Measurement of respective illuminances on the south vertical surfaces resulted in minimum values of 10.5 KLx, mean values of 33.59 KLx and maximum values of 79.6 KLx. Conclusion: In this study was developed a regression model between measured and calculated data of south facing vertical illuminance. This model, have a good linear correlation between measured and calculated values (r= 0.892).
Resumo:
A comprehensive one-dimensional meanline design approach for radial inflow turbines is described in the present work. An original code was developed in Python that takes a novel approach to the automatic selection of feasible machines based on pre-defined performance or geometry characteristics for a given application. It comprises a brute-force search algorithm that traverses the entire search space based on key non-dimensional parameters and rotational speed. In this study, an in-depth analysis and subsequent implementation of relevant loss models as well as selection criteria for radial inflow turbines is addressed. Comparison with previously published designs, as well as other available codes, showed good agreement. Sample (real and theoretical) test cases were trialed and results showed good agreement when compared to other available codes. The presented approach was found to be valid and the model was found to be a useful tool with regards to the preliminary design and performance estimation of radial inflow turbines, enabling its integration with other thermodynamic cycle analysis and three-dimensional blade design codes.
Resumo:
A range of risk management initiatives have been introduced in organisations in attempt to reduce occupational road incidents. However a discrepancy exists between the initiatives that are frequently implemented in organisations and the initiatives that have demonstrated scientific merit in improving occupational road safety. Given that employees’ beliefs may facilitate or act as a barrier to implementing initiatives, it is important to understand whether initiatives with scientific merit are perceived to be effective by employees. To explore employee perceptions pertaining to occupational road safety initiatives, a questionnaire was administered to 679 employees sourced from four Australian organisations. Participants ranged in age from 18 years to 65 years (M = 42, SD = 11). Participants rated 35 initiatives based on how effective they thought they would be in improving road safety in their organisation. The initiatives perceived by employees to be most effective in managing occupational road risks comprised: making vehicle safety features standard e.g. passenger airbags; practical driver skills training; and investigation of serious vehicle incidents. The initiatives perceived to be least effective in managing occupational road risks comprised: signing a promise card commitment to drive safely; advertising the organisation’s phone number on vehicles for complaints and compliments; and consideration of driving competency in staff selection process. Employee perceptions were analysed at a factor level and at an initiative level. The mean scores for the three extracted factors revealed that employees believed occupational road risks could best be managed by the employer implementing engineering and human resource methods to enhance road safety. Initiatives relating to employer management of identified risk factors were perceived to be more effective than feedback or motivational methods that required employees to accept responsibility for their driving safety. Practitioners can use the findings from this study to make informed decisions about how they select, manage and market occupational safety initiatives.
Resumo:
The ability to accurately predict the remaining useful life of machine components is critical for machine continuous operation, and can also improve productivity and enhance system safety. In condition-based maintenance (CBM), maintenance is performed based on information collected through condition monitoring and an assessment of the machine health. Effective diagnostics and prognostics are important aspects of CBM for maintenance engineers to schedule a repair and to acquire replacement components before the components actually fail. All machine components are subjected to degradation processes in real environments and they have certain failure characteristics which can be related to the operating conditions. This paper describes a technique for accurate assessment of the remnant life of machines based on health state probability estimation and involving historical knowledge embedded in the closed loop diagnostics and prognostics systems. The technique uses a Support Vector Machine (SVM) classifier as a tool for estimating health state probability of machine degradation, which can affect the accuracy of prediction. To validate the feasibility of the proposed model, real life historical data from bearings of High Pressure Liquefied Natural Gas (HP-LNG) pumps were analysed and used to obtain the optimal prediction of remaining useful life. The results obtained were very encouraging and showed that the proposed prognostic system based on health state probability estimation has the potential to be used as an estimation tool for remnant life prediction in industrial machinery.
Resumo:
Research indicates that enrolments in separate special educational settings for students with disruptive behaviour have increased in a number of educational jurisdictions internationally. Recent analysis of school enrolment data has identified a similar increase in the New South Wales (NSW) government school sector; however, questions have been raised as to their use and effectiveness. To situate the NSW experiment with behaviour schools in a broader context, the paper begins with a review of the international research literature. This is followed by a discussion of the NSW experience with the aim of identifying parallels and gaps in the research. The paper concludes by outlining important questions and directions for research to better understand and improve the educational experiences and outcomes of disruptive disaffected students in Australia’s largest school system.
Resumo:
In recent years, some models have been proposed for the fault section estimation and state identification of unobserved protective relays (FSE-SIUPR) under the condition of incomplete state information of protective relays. In these models, the temporal alarm information from a faulted power system is not well explored although it is very helpful in compensating the incomplete state information of protective relays, quickly achieving definite fault diagnosis results and evaluating the operating status of protective relays and circuit breakers in complicated fault scenarios. In order to solve this problem, an integrated optimization mathematical model for the FSE-SIUPR, which takes full advantage of the temporal characteristics of alarm messages, is developed in the framework of the well-established temporal constraint network. With this model, the fault evolution procedure can be explained and some states of unobserved protective relays identified. The model is then solved by means of the Tabu search (TS) and finally verified by test results of fault scenarios in a practical power system.