968 resultados para EVOLUTIONARY HISTORY
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Recent molecular analyses indicate that many reef coral species belong to hybridizing species complexes or "syngameons." Such complexes consist of numerous genetically distinct-species or lineages, which periodically split and/or fuse as they extend through time. During splitting and fusion, morphologic intermediates form and species overlap. Here we focus on processes associated with lineage fusion, specifically introgressive hybridization, and the recognition of such hybridization in the fossil record. Our approach involves comparing patterns of ecologic and morphologic overlap in genetically characterized modern species with fossil representatives of the same or closely related species. We similarly consider the long-term consequences of past hybridization on the structure of modern-day species boundaries. Our study involves the species complex Montastraea annularis s.l. and is based in the Bahamas, where, unlike other Caribbean locations, two of the three members of the complex today are not genetically distinct. We measured and collected colonies along linear transects across Pleistocene reef terraces of last interglacial age (approximately 125 Ka) on the islands of San Salvador, Andros, and Great Inagua. We performed quantitative ecologic and morphologic analyses of the fossil data, and compared patterns of overlap among species with data from modern localities where species are and are not genetically distinct. Ecologic and morphologic analyses reveal "moderate" overlap (>10%, but statistically significant differences) and sometimes "high" overlap (no statistically significant differences) among Pleistocene growth forms (= "species"). Ecologic analyses show that three species (massive, column, organ-pipe) co-occurred. Although organ-pipes had higher abundances in patch reef environments, columnar and massive species exhibited broad, completely overlapping distributions and had abundances that were not related to reef environment. For morphometric analyses, we used multivariate discriminant analysis on landmark data and linear measurements. The results show that columnar species overlap "moderately" with organ-pipe and massive species. Comparisons with genetically characterized colonies from Panama show that the Pleistocene Bahamas species have intermediate morphologies, and that the observed "moderate" overlap differs from the morphologic separation among the three modern species. In contrast, massive and columnar species from the Pleistocene of the Dominican Republic comprise distinct morphologic clusters, similar to the modern species; organ-pipe species exhibit "low" overlap (
Resumo:
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. We present evidence, based on searches of publicly available databases, that the nematode Caenorhabditis briggsae has several maT-like transposons, which we have designated as CbmaT elements, dispersed throughout its genome. We also describe two additional transposon sequences that probably share their evolutionary history with the CbmaT transposons. One resembles a fold back variant of a CbmaT element, with long (380-bp) inverted terminal repeats (ITRs) that show a high degree (71%) of identity to CbmaT1. The other, which shares only the 26-bp ITR sequences with one of the CbmaT variants, is present in eight nearly identical copies, but does not have a transposase gene and may therefore be cross mobilised by a CbmaT transposase. Using PCR-based mobility assays, we show that CbmaT1 transposons are capable of excising from the C. briggsae genome. CbmaT1 excised approximately 500 times less frequently than Tcb1 in the reference strain AF16, but both CbmaT1 and Tcb1 excised at extremely high frequencies in the HK105 strain. The HK105 strain also exhibited a high frequency of spontaneous induction of unc-22 mutants, suggesting that it may be a mutator strain of C. briggsae.
Resumo:
Mirror neurons in the tree of life rappresenta lo sviluppo e l' evoluzione del sistema dei neuroni specchio nei primati umani, non - umani e di alcune specie di uccelli, utilizzando metodi cooptati dalla filosofia della biologia e la biologia teorica, per integrare dati relativi al sistema nervoso e al comportamento delle specie in esame.
Resumo:
Certain aspects of advertising–especially on television–are not easily explained with conventional economic models. In particular, much of the imagery and repetitive thematic content seen in advertisements suggests it is "psychological" in nature, as opposed to "informative". To understand the economic rationale for incorporating such material, we develop a theory of preferences in which information about threshold payoffs induces sudden shifts in demand. These threshold payoffs are best understood in the context of human evolutionary history. Furthermore, the presence of threshold payoffs in consumer preferences gives firms incentive for providing threshold-type information. To examine the use of threshold-related content in television advertisements, we look for this con- tent in a sample of 370 television advertisements. We find considerable evidence that advertisers make strategic use of threshold-type content in television advertisements. Specifically, threshold-related content occurred in 83% of food and beverage advertisements for children and in 71% of advertisements for general audiences. Furthermore, the threshold-related content in children’s food and beverage advertisements occurred with statistically greater frequency than factual content, which isn’t true for food and beverage advertisements for general audiences.
Resumo:
Leishmaniasis is a typical vectorial disease transmitted by Psycodidae vectors (Lutzomyans, Phlebotomus species). The worldwide observed 1,5-2 million new cases and 60,000 death caused by Leishmania parasites per year make leishmaniasis is one of the most important vectorial disease in the tropicals and warm temperate areas of the World. In the human environment dogs and cats are the most important hosts of the different leishmania agents. The different leishmania species cause symptomatically cutan or visceral disease forms, but many other type of the disease has recognised. Phlebotomus species are sensitive to climatic patterns, they require hight relative air humidity, mild winters and long and warm vegetation period, but the environmental requirements of the species naturally is not the same. Due to climate change in the near future the climate of Western and Central Europe could allow the colonisation of these highly populated areas with also the vectors and the parasites. Our aim was to analyse the environmental patterns of the current distribution area of 8 important sand flies (P. ariasi, P. perniciosus, P. perfiliewi, P. papatasi, P. tobbi, P. neglectus, P. similis and P. sergenti) using the 1960-1990 period’s climate as reference. Using climate envelope modeling we determined these climatic characters and using the REMO climate projection we created the recent and the near-future (2011-2040 and 2041-2070) potential distribution area of the sand flies. The current known area of many Phlebotomus species restricted either to the western or to the eastern Mediterranean Basin. We found that their climatic requirements are could not explain their segregation, it is maybe the consequence of their evolutionary history (geographical barriers and paleoclimatic history). By the end of the 2060’s most parts of Western Europe can be colonized by sand flies, mostly by P. ariasi and P. pernicosus. P. ariasi showed the greatest potential northward expansion. Our model resulted 1 to 2 months prolongation of the potentially active period of P. neglectus P. papatasi and P. perniciosus for the 2070’s in Southern Hungary. As the climate becomes drier and warmer, sand flies will occupy more and more parts of Hungary. Our findings confirm the concerns that leishmanisais can become a real hazard for the major part of the European population to the end of the 21th century and the Carpathian Basin is a particularly vulnerable area.
Resumo:
Cetaceans are aquatic mammals that rely primarily on sound for most daily tasks. A compendium of sounds is emitted for orientation, prey detection, and predator avoidance, and to communicate. Communicative sounds are among the most studied Cetacean signals, particularly those referred to as tonal sounds. Because tonal sounds have been studied especially well in social dolphins, it has been assumed these sounds evolved as a social adaptation. However, whistles have been reported in ‘solitary’ species and have been secondarily lost three times in social lineages. Clearly, therefore, it is necessary to examine closely the association, if any, between whistles and sociality instead of merely assuming it. Several hypotheses have been proposed to explain the evolutionary history of Cetacean tonal sounds. The main goal of this dissertation is to cast light on the evolutionary history of tonal sounds by testing these hypotheses by combining comparative phylogenetic and field methods. This dissertation provides the first species-level phylogeny of Cetacea and phylogenetic tests of evolutionary hypotheses of cetacean communicative signals. Tonal sounds evolution is complex in that has likely been shaped by a combination of factors that may influence different aspects of their acoustical structure. At the inter-specific level, these results suggest that only tonal sound minimum frequency is constrained by body size. Group size also influences tonal sound minimum frequency. Species that live in large groups tend to produce higher frequency tonal sounds. The evolutionary history of tonal sounds and sociality may be intertwined, but in a complex manner rejecting simplistic views such as the hypothesis that tonal sounds evolved ‘for’ social communication in dolphins. Levels of social and tonal sound complexity nevertheless correlate indicating the importance of tonal sounds in social communication. At the intraspecific level, tonal sound variation in frequency and temporal parameters may be product of genetic isolation and local levels of underwater noise. This dissertation provides one of the first insights into the evolution of Cetacean tonal sounds in a phylogenetic context, and points out key species where future studies would be valuable to enrich our understanding of other factors also playing a role in tonal sound evolution. ^
Resumo:
Strelitziaceae is a tropical monocot family comprising three genera and seven species: Ravenala Adans and Phenkospermum Endl., which are monotypic, and five species of Strelitzia Aiton. All species produce woody capsular fruits that contain vibrantly colored arillate seeds. Arils of the Strelitzia species are orange, those of Phenakospermum are red, and those of Ravenala are blue. Unlike most plant pigments, which degrade after cell death, aril pigments in the family persist for decades. Chemical properties of the compounds are unusual, and do not match those of known pigment classes (carotenoids, flavonoids, betalains, and the chlorophylls). I isolated the orange pigment from the arils of Strelitzia nicolai, and performed HPLC-ESMS, UV-visible, 1H NMR and 13C NMR analyses to determine its chemical structure. These data indicated the pigment was bilirubin-IX, an orange-yellow tetrapyrrole previously known only in mammals and some other vertebrates as the breakdown product of heme. Although related tetrapyrroles are ubiquitous throughout the plant kingdom and include vital biosynthetic products such as chlorophyll and phytochromobilin, this is the first report of bilirubin in a plant, and evidence of an additional biosynthetic pathway producing orange coloration in flowers and fruits. ^ Given the unexpected presence of bilirubin, Iexamined the fruits and flowers of twelve additional angiosperm species in diverse orders for the presence of bilirubin using HPLC and LC-MS. Bilirubin was present in ten species from the orders Zingiberales, Arecales, and Myrtales, indicating its wide distribution in the plant kingdom. Bilirubin was present in low concentrations in all species except those within Strelitziaceae. It was present in particularly high concentrations in S. nicolai, S. reginae and P. guyannense, and is thus responsible for producing color in these species. ^ No studies have examined the evolutionary relationship among all species in the family. Thus, I also constructed a molecular phylogeny of the family. This information, combined with further studies on the distribution and synthesis of bilirubin in plants, will provide a basis for understanding the evolutionary history of this pigment in the plant kingdom.^
Resumo:
We present a framework for explaining variation in predator invasion success and predator impacts on native prey that integrates information about predator–prey naïveté, predator and prey behavioral responses to each other, consumptive and non-consumptive effects of predators on prey, and interacting effects of multiple species interactions. We begin with the ‘naïve prey’ hypothesis that posits that naïve, native prey that lack evolutionary history with non-native predators suffer heavy predation because they exhibit ineffective antipredator responses to novel predators. Not all naïve prey, however, show ineffective antipredator responses to novel predators. To explain variation in prey response to novel predators, we focus on the interaction between prey use of general versus specific cues and responses, and the functional similarity of non-native and native predators. Effective antipredator responses reduce predation rates (reduce consumptive effects of predators, CEs), but often also carry costs that result in non-consumptive effects (NCEs) of predators. We contrast expected CEs versus NCEs for non-native versus native predators, and discuss how differences in the relative magnitudes of CEs and NCEs might influence invasion dynamics. Going beyond the effects of naïve prey, we discuss how the ‘naïve prey’, ‘enemy release’ and ‘evolution of increased competitive ability’ (EICA) hypotheses are inter-related, and how the importance of all three might be mediated by prey and predator naïveté. These ideas hinge on the notion that non-native predators enjoy a ‘novelty advantage’ associated with the naïveté of native prey and top predators. However, non-native predators could instead suffer from a novelty disadvantage because they are also naïve to their new prey and potential predators. We hypothesize that patterns of community similarity and evolution might explain the variation in novelty advantage that can underlie variation in invasion outcomes. Finally, we discuss management implications of our framework, including suggestions for managing invasive predators, predator reintroductions and biological control.
Resumo:
Fire is a globally distributed disturbance that impacts terrestrial ecosystems and has been proposed to be a global “herbivore.” Fire, like herbivory, is a top-down driver that converts organic materials into inorganic products, alters community structure, and acts as an evolutionary agent. Though grazing and fire may have some comparable effects in grasslands, they do not have similar impacts on species composition and community structure. However, the concept of fire as a global herbivore implies that fire and herbivory may have similar effects on plant functional traits. Using 22 years of data from a mesic, native tallgrass prairie with a long evolutionary history of fire and grazing, we tested if trait composition between grazed and burned grassland communities would converge, and if the degree of convergence depended on fire frequency. Additionally, we tested if eliminating fire from frequently burned grasslands would result in a state similar to unburned grasslands, and if adding fire into a previously unburned grassland would cause composition to become more similar to that of frequently burned grasslands. We found that grazing and burning once every four years showed the most convergence in traits, suggesting that these communities operate under similar deterministic assembly rules and that fire and herbivory are similar disturbances to grasslands at the trait-group level of organization. Three years after reversal of the fire treatment we found that fire reversal had different effects depending on treatment. The formerly unburned community that was then burned annually became more similar to the annually burned community in trait composition suggesting that function may be rapidly restored if fire is reintroduced. Conversely, after fire was removed from the annually burned community trait composition developed along a unique trajectory indicating hysteresis, or a time lag for structure and function to return following a change in this disturbance regime. We conclude that functional traits and species-based metrics should be considered when determining and evaluating goals for fire management in mesic grassland ecosystems.
Resumo:
Cetaceans are aquatic mammals that rely primarily on sound for most daily tasks. A compendium of sounds is emitted for orientation, prey detection, and predator avoidance, and to communicate. Communicative sounds are among the most studied Cetacean signals, particularly those referred to as tonal sounds. Because tonal sounds have been studied especially well in social dolphins, it has been assumed these sounds evolved as a social adaptation. However, whistles have been reported in ‘solitary’ species and have been secondarily lost three times in social lineages. Clearly, therefore, it is necessary to examine closely the association, if any, between whistles and sociality instead of merely assuming it. Several hypotheses have been proposed to explain the evolutionary history of Cetacean tonal sounds. The main goal of this dissertation is to cast light on the evolutionary history of tonal sounds by testing these hypotheses by combining comparative phylogenetic and field methods. This dissertation provides the first species-level phylogeny of Cetacea and phylogenetic tests of evolutionary hypotheses of cetacean communicative signals. Tonal sounds evolution is complex in that has likely been shaped by a combination of factors that may influence different aspects of their acoustical structure. At the inter-specific level, these results suggest that only tonal sound minimum frequency is constrained by body size. Group size also influences tonal sound minimum frequency. Species that live in large groups tend to produce higher frequency tonal sounds. The evolutionary history of tonal sounds and sociality may be intertwined, but in a complex manner rejecting simplistic views such as the hypothesis that tonal sounds evolved ‘for’ social communication in dolphins. Levels of social and tonal sound complexity nevertheless correlate indicating the importance of tonal sounds in social communication. At the intraspecific level, tonal sound variation in frequency and temporal parameters may be product of genetic isolation and local levels of underwater noise. This dissertation provides one of the first insights into the evolution of Cetacean tonal sounds in a phylogenetic context, and points out key species where future studies would be valuable to enrich our understanding of other factors also playing a role in tonal sound evolution.