495 resultados para ENHANCEMENTS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a comprehensive analytical study of radiative transfer using the method of moments and include the effects of non-isotropic scattering in the coherent limit. Within this unified formalism, we derive the governing equations and solutions describing two-stream radiative transfer (which approximates the passage of radiation as a pair of outgoing and incoming fluxes), flux-limited diffusion (which describes radiative transfer in the deep interior) and solutions for the temperature-pressure profiles. Generally, the problem is mathematically under-determined unless a set of closures (Eddington coefficients) is specified. We demonstrate that the hemispheric (or hemi-isotropic) closure naturally derives from the radiative transfer equation if energy conservation is obeyed, while the Eddington closure produces spurious enhancements of both reflected light and thermal emission. We concoct recipes for implementing two-stream radiative transfer in stand-alone numerical calculations and general circulation models. We use our two-stream solutions to construct toy models of the runaway greenhouse effect. We present a new solution for temperature-pressure profiles with a non-constant optical opacity and elucidate the effects of non-isotropic scattering in the optical and infrared. We derive generalized expressions for the spherical and Bond albedos and the photon deposition depth. We demonstrate that the value of the optical depth corresponding to the photosphere is not always 2/3 (Milne's solution) and depends on a combination of stellar irradiation, internal heat and the properties of scattering both in optical and infrared. Finally, we derive generalized expressions for the total, net, outgoing and incoming fluxes in the convective regime.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Investigations have shown that the analysis results of ground level enhancements (GLEs) based on neutron monitor (NM) data for a selected event can differ considerably depending the procedure used. This may have significant consequences e.g. for the assessment of radiation doses at flight altitudes. The reasons for the spread of the GLE parameters deduced from NM data can be manifold and are at present unclear. They include differences in specific properties of the various analysis procedures (e.g. NM response functions, different ways in taking into account the dynamics of the Earth’s magnetospheric field), different characterisations of the solar particle flux near Earth as well as the specific selection of NM stations used for the analysis. In the present paper we quantitatively investigate this problem for a time interval during the maximum phase of the GLE on 13 December 2006. We present and discuss the changes in the resulting GLE parameters when using different NM response functions, different model representations of the Earth’s magnetospheric field as well as different assumptions for the solar particle spectrum and pitch angle distribution near Earth. The results of the study are expected to yield a basis for the reduction in the spread of the GLE parameters deduced from NM data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The radiation dose rates at flight altitudes can increase by orders of magnitude for a short time during energetic solar cosmic ray events, so called ground level enhancements (GLEs). Especially at high latitudes and flight altitudes, solar energetic particles superposed on galactic cosmic rays may cause radiation that exceeds the maximum allowed dosage limit for the general public. Therefore the determination of the radiation dose rate during GLEs should be as reliable as possible. Radiation dose rates along flight paths are typically determined by computer models that are based on cosmic ray flux and anisotropy parameters derived from neutron monitor and/or satellite measurements. The characteristics of the GLE on 15 April 2001 (GLE60) were determined and published by various authors. In this work we compare these results and investigate the consequences on the computed radiation dose rates along selected flight paths. In addition, we compare the computed radiation dose rates with measurements that were made during GLE60 on board two transatlantic flights.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Survival after diagnosis is a fundamental concern in cancer epidemiology. In resource-rich settings, ambient clinical databases, municipal data and cancer registries make survival estimation in real-world populations relatively straightforward. In resource-poor settings, given the deficiencies in a variety of health-related data systems, it is less clear how well we can determine cancer survival from ambient data. METHODS We addressed this issue in sub-Saharan Africa for Kaposi's sarcoma (KS), a cancer for which incidence has exploded with the HIV epidemic but for which survival in the region may be changing with the recent advent of antiretroviral therapy (ART). From 33 primary care HIV Clinics in Kenya, Uganda, Malawi, Nigeria and Cameroon participating in the International Epidemiologic Databases to Evaluate AIDS (IeDEA) Consortia in 2009-2012, we identified 1328 adults with newly diagnosed KS. Patients were evaluated from KS diagnosis until death, transfer to another facility or database closure. RESULTS Nominally, 22% of patients were estimated to be dead by 2 years, but this estimate was clouded by 45% cumulative lost to follow-up with unknown vital status by 2 years. After adjustment for site and CD4 count, age <30 years and male sex were independently associated with becoming lost. CONCLUSIONS In this community-based sample of patients diagnosed with KS in sub-Saharan Africa, almost half became lost to follow-up by 2 years. This precluded accurate estimation of survival. Until we either generally strengthen data systems or implement cancer-specific enhancements (e.g., tracking of the lost) in the region, insights from cancer epidemiology will be limited.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The issue of bias-motivated crimes has attracted consderable attention in recent years. In this paper, we develop an economic framework to analyze penalty enhancements for bias-motivated crimes. We extend the standard model by introducing two different groups of potential victims of crime, and assume that a potential offender's benefits from a crime depend on the group to which the victim belongs. We begin with the assumption that the harm to an individual victim from a bias-motivated crime is identical to that from an equivalent non-hate crime. Nonetheless, we derive the result that a pattern of crimes disproportionately targeting an identifiable group leads to greater social harm. This conclusion follows both from a model where disparities in groups' victimization probabilities lead to social losses due to fairness concerns, as well as a model where potential victims have the opportunity to undertake socially costly victimization avoidance activities. In particular, penalty enhancements can reduce the incentives for avoidance activity, and thereby protect the networks of profitable interactions that link members of different groups. We also argue that those groups that are covered by hate crime statutes tend to be those whose characteristics make it especially likely that penalty enhancement is socially optimal. Finally, we consider a number of other issues related to hate crimes, including teh choice of sanctions from behind a Rawlsian 'veil of ignorance' concerning group identity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The PROPELLER (Periodically Rotated Overlapping Parallel Lines with Enhanced Reconstruction) magnetic resonance imaging (MRI) technique has inherent advantages over other fast imaging methods, including robust motion correction, reduced image distortion, and resistance to off-resonance effects. These features make PROPELLER highly desirable for T2*-sensitive imaging, high-resolution diffusion imaging, and many other applications. However, PROPELLER has been predominantly implemented as a fast spin-echo (FSE) technique, which is insensitive to T2* contrast, and requires time-inefficient signal averaging to achieve adequate signal-to-noise ratio (SNR) for many applications. These issues presently constrain the potential clinical utility of FSE-based PROPELLER. ^ In this research, our aim was to extend and enhance the potential applications of PROPELLER MRI by developing a novel multiple gradient echo PROPELLER (MGREP) technique that can overcome the aforementioned limitations. The MGREP pulse sequence was designed to acquire multiple gradient-echo images simultaneously, without any increase in total scan time or RF energy deposition relative to FSE-based PROPELLER. A new parameter was also introduced for direct user-control over gradient echo spacing, to allow variable sensitivity to T2* contrast. In parallel to pulse sequence development, an improved algorithm for motion correction was also developed and evaluated against the established method through extensive simulations. The potential advantages of MGREP over FSE-based PROPELLER were illustrated via three specific applications: (1) quantitative T2* measurement, (2) time-efficient signal averaging, and (3) high-resolution diffusion imaging. Relative to the FSE-PROPELLER method, the MGREP sequence was found to yield quantitative T2* values, increase SNR by ∼40% without any increase in acquisition time or RF energy deposition, and noticeably improve image quality in high-resolution diffusion maps. In addition, the new motion algorithm was found to improve the performance considerably in motion-artifact reduction. ^ Overall, this work demonstrated a number of enhancements and extensions to existing PROPELLER techniques. The new technical capabilities of PROPELLER imaging, developed in this thesis research, are expected to serve as the foundation for further expanding the scope of PROPELLER applications. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Very significant enhancements of the element iridium have been observed in association with the Cretaceous/ Tertiary boundary in marine sediments laid down 65 m.y. ago and subsequently uplifted above the ocean's surface. If our hypothesis for the origin of the iridium and the cause of the Cretaceous/Tertiary life extinctions (the asteroid-impact theory) (Alvarez et al., 1980) is correct, the Ir anomaly should be associated with the Cretaceous/ Tertiary boundary region wherever it is intact. The present work was undertaken to search for the Ir anomaly in a deep-sea-drilling core, in order to check this aspect of the asteroid-impact theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Continuous sea salt and mineral dust aerosol records have been studied on the two EPICA (European Project for Ice Coring in Antarctica) deep ice cores. The joint use of these records from opposite sides of the East Antarctic plateau allows for an estimate of changes in dust transport and emission intensity as well as for the identification of regional differences in the sea salt aerosol source. The mineral dust flux records at both sites show a strong coherency over the last 150 kyr related to dust emission changes in the glacial Patagonian dust source with three times higher dust fluxes in the Atlantic compared to the Indian Ocean sector of the Southern Ocean (SO). Using a simple conceptual transport model this indicates that transport can explain only 40% of the atmospheric dust concentration changes in Antarctica, while factor 5-10 changes occurred. Accordingly, the main cause for the strong glacial dust flux changes in Antarctica must lie in environmental changes in Patagonia. Dust emissions, hence environmental conditions in Patagonia, were very similar during the last two glacials and interglacials, respectively, despite 2-4 °C warmer temperatures recorded in Antarctica during the penultimate interglacial than today. 2-3 times higher sea salt fluxes found in both ice cores in the glacial compared to the Holocene are difficult to reconcile with a largely unchanged transport intensity and the distant open ocean source. The substantial glacial enhancements in sea salt aerosol fluxes can be readily explained assuming sea ice formation as the main sea salt aerosol source with a significantly larger expansion of (summer) sea ice in the Weddell Sea than in the Indian Ocean sector. During the penultimate interglacial, our sea salt records point to a 50% reduction of winter sea ice coverage compared to the Holocene both in the Indian and Atlantic Ocean sector of the SO. However, from 20 to 80 ka before present sea salt fluxes show only very subdued millennial changes despite pronounced temperature fluctuations, likely due to the large distance of the sea ice salt source to our drill sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Monte Carlo based radiative transfer model has been developed for calculating the availability of solar radiation within the top 100 m of the ocean. The model is optimized for simulations of spatial high resolution downwelling irradiance Ed fluctuations that arise from the lensing effect of waves at the water surface. In a first step the accuracy of simulation results has been verified by measurements of the oceanic underwater light field and through intercomparison with an established radiative transfer model. Secondly the potential depth-impact of nonlinear shaped single waves, from capillary to swell waves, is assessed by considering the most favorable conditions for light focusing, i.e. monochromatic light at 490 nm, very clear oceanic water with a low chlorophyll a content of 0.1 mg/m**3 and high sun elevation. Finally light fields below irregular wave profiles accounting for realistic sea states were simulated. Our simulation results suggest that under open ocean conditions light flashes with 50% irradiance enhancements can appear down to 35 m depth, and light variability in the range of ±10% compared to the mean Ed is still possible in 100 m depth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the important roles of shallow-water sediments in global biogeochemical cycling, the effects of ocean acidification on sedimentary processes have received relatively little attention. As high-latitude cold waters can absorb more CO2 and usually have a lower buffering capacity than warmer waters, acidification rates in these areas are faster than those in sub-tropical regions. The present study investigates the effects of ocean acidification on sediment composition, processes and sediment-water fluxes in an Arctic coastal system. Undisturbed sediment cores, exempt of large dwelling organisms, were collected, incubated for a period of 14 days, and subject to a gradient of pCO2 covering the range of values projected for the end of the century. On five occasions during the experimental period, the sediment cores were isolated for flux measurements (oxygen, alkalinity, dissolved inorganic carbon, ammonium, nitrate, nitrite, phosphate and silicate). At the end of the experimental period, denitrification rates were measured and sediment samples were taken at several depth intervals for solid-phase analyses. Most of the parameters and processes (i.e. mineralization, denitrification) investigated showed no relationship with the overlying seawater pH, suggesting that ocean acidification will have limited impacts on the microbial activity and associated sediment-water fluxes on Arctic shelves, in the absence of active bio-irrigating organisms. Only following a pH decrease of 1 pH unit, not foreseen in the coming 300 years, significant enhancements of calcium carbonate dissolution and anammox rates were observed. Longer-term experiments on different sediment types are still required to confirm the limited impact of ocean acidification on shallow Arctic sediment processes as observed in this study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This doctoral thesis explores some of the possibilities that near-field optics can bring to photovoltaics, and in particular to quantum-dot intermediate band solar cells (QD-IBSCs). Our main focus is the analytical optimization of the electric field distribution produced in the vicinity of single scattering particles, in order to produce the highest possible absorption enhancement in the photovoltaic medium in their surroundings. Near-field scattering structures have also been fabricated in laboratory, allowing the application of the previously studied theoretical concepts to real devices. We start by looking into the electrostatic scattering regime, which is only applicable to sub-wavelength sized particles. In this regime it was found that metallic nano-spheroids can produce absorption enhancements of about two orders of magnitude on the material in their vicinity, due to their strong plasmonic resonance. The frequency of such resonance can be tuned with the shape of the particles, allowing us to match it with the optimal transition energies of the intermediate band material. Since these metallic nanoparticles (MNPs) are to be inserted inside the cell photovoltaic medium, they should be coated by a thin insulating layer to prevent electron-hole recombination at their surface. This analysis is then generalized, using an analytical separation-of-variables method implemented in Mathematica7.0, to compute scattering by spheroids of any size and material. This code allowed the study of the scattering properties of wavelengthsized particles (mesoscopic regime), and it was verified that in this regime dielectric spheroids perform better than metallic. The light intensity scattered from such dielectric spheroids can have more than two orders of magnitude than the incident intensity, and the focal region in front of the particle can be shaped in several ways by changing the particle geometry and/or material. Experimental work was also performed in this PhD to implement in practice the concepts studied in the analysis of sub-wavelength MNPs. A wet-coating method was developed to self-assemble regular arrays of colloidal MNPs on the surface of several materials, such as silicon wafers, amorphous silicon films, gallium arsenide and glass. A series of thermal and chemical tests have been performed showing what treatments the nanoparticles can withstand for their embedment in a photovoltaic medium. MNPs arrays are then inserted in an amorphous silicon medium to study the effect of their plasmonic near-field enhancement on the absorption spectrum of the material. The self-assembled arrays of MNPs constructed in these experiments inspired a new strategy for fabricating IBSCs using colloidal quantum dots (CQDs). Such CQDs can be deposited in self-assembled monolayers, using procedures similar to those developed for the patterning of colloidal MNPs. The use of CQDs to form the intermediate band presents several important practical and physical advantages relative to the conventional dots epitaxially grown by the Stranski-Krastanov method. Besides, this provides a fast and inexpensive method for patterning binary arrays of QDs and MNPs, envisioned in the theoretical part of this thesis, in which the MNPs act as antennas focusing the light in the QDs and therefore boosting their absorption

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymer nanocomposites, specifically nanoclay-reinforced polymers, have attracted great interest as matrix materials for high temperature composite applications. Nanocomposites require relatively low dispersant loads to achieve significant property enhancements. These enhancements are mainly a consequence of the interfacial effects that result from dispersing the silicate nanolayers in the polymer matrix and the high in-plane strength, stiffness and aspect ratio of the lamellar nanoparticles. The montmorillonite (MMT) clay, modified with organic onium ions with long alkyl chains as Cloisites, has been widely used to obtain nanocomposites. The presence of reactive groups in organic onium ions can form chemical bonds with the polymer matrix which favours a very high exfoliation degree of the clay platelets in the nanocomposite (1,2)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Th e CERES-Maize model is the most widely used maize (Zea mays L.) model and is a recognized reference for comparing new developments in maize growth, development, and yield simulation. Th e objective of this study was to present and evaluate CSMIXIM, a new maize simulation model for DSSAT version 4.5. Code from CSM-CERES-Maize, the modular version of the model, was modifi ed to include a number of model improvements. Model enhancements included the simulation of leaf area, C assimilation and partitioning, ear growth, kernel number, grain yield, and plant N acquisition and distribution. Th e addition of two genetic coeffi cients to simulate per-leaf foliar surface produced 32% smaller root mean square error (RMSE) values estimating leaf area index than did CSM-CERES. Grain yield and total shoot biomass were correctly simulated by both models. Carbon partitioning, however, showed diff erences. Th e CSM-IXIM model simulated leaf mass more accurately, reducing the CSM-CERES error by 44%, but overestimated stem mass, especially aft er stress, resulting in similar average RMSE values as CSM-CERES. Excessive N uptake aft er fertilization events as simulated by CSM-CERES was also corrected, reducing the error by 16%. Th e accuracy of N distribution to stems was improved by 68%. Th ese improvements in CSM-IXIM provided a stable basis for more precise simulation of maize canopy growth and yield and a framework for continuing future model developments

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Environmentally friendly molybdenum disulfide (INT-MoS2) inorganic nanotubes were introduced into an isotactic polypropylene (iPP) polymer matrix to generate novel nanocomposite materials through an advantageous melt-processing route. The effects of INT-MoS2 content on the thermal, mechanical and tribological properties were investigated. The incorporation of INT-MoS2 generates notable performance enhancements through reinforcement effects, highly efficient nucleation activity and excellent lubricating ability in comparison with other nanoparticle fillers such as nanoclays, carbon nanotubes, silicon nitrides and halloysite nanotubes. It was shown that these INT-MoS2 nanocomposites can provide an effective balance between performance, cost effectiveness and processability, and should be of some interest in the area of multifunctional polymer nanocomposite materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of quantum dot (QD) size on the performance of quantum dot intermediate band solar cells is investigated. A numerical model is used to calculate the bound state energy levels and the absorption coefficient of transitions from the ground state to all other states in the conduction band. Comparing with the current state of the art, strong absorption enhancements are found for smaller quantum dots, as well as a better positioning of the energy levels, which is expected to reduce thermal carrier escape. It is concluded that reducing the quantum dot size can increase sub-bandgap photocurrent and improve voltage preservation.