941 resultados para ELECTRICAL EQUIPMENT
Resumo:
The Electrical Examining Board is responsible for overseeing the licensing, permitting, inspection and continuing education requirements of the statewide electrician and electrical contractor program in Iowa. This issue review provides a summary of the program and a review of the current situation.
Resumo:
Rapport de synthèse : Introduction : La stimulation électrique représente une nouvelle modalité thérapeutique de divers troubles digestifs. Dans la constipation par exemple, le péristaltisme colique peut être activé par un système électrique alimenté par une batterie. La présente étude a pour but de démontrer l'impact d'une stimulation électrique directe du côlon sur le temps de transit moyen, en utilisant un modèle expérimental chronique porcin. L'effet de la stimulation et du matériel implanté dans la paroi colique est également évalué. Matériel et méthode : Trois paires d'électrodes ont été implantées dans la paroi cæcale de douze porcs anesthésiés. Avant implantation, un temps de transit colique de référence a été déterminé chez chaque animal par utilisation de marqueurs radio-opaques. Cette évaluation a été répétée quatre semaines après implantation, sous stimulation factice, et cinq semaines après implantation, sous stimulation électrique. Des trains séquentiels et aboraux de stimulation (10 V ; 120 Hz ; 1 ms) ont été appliqués quotidiennement durant six jours, en utilisant un stimulateur externe fonctionnant sur batteries. Pour chaque série de marqueurs, une valeur moyenne a été calculée à partir du temps de transit individuel des porcs. Un examen microscopique du cæcum a été systématiquement entrepris après sacrifice des animaux. Résultats : Une réduction du temps de transit moyen a été observée après stimulation électrique (19h ± 13 ; moyenne ± DS), comparativement au temps de référence (34h ± 7 ; p=0.045) et au temps de transit après stimulation factice (36h ± 9 ; p=0.035). L'examen histologique a montré la présence d'une inflammation chronique minime, autour des électrodes. Conclusion : Le temps de transit colique porcin peut être réduit, en conditions expérimentales chroniques, par une stimulation électrique directe et séquentielle de l'intestin. Des lésions tissulaires limitées ont été occasionnées par la stimulation ou le matériel implanté. La stimulation électrique colique représente certainement une approche prometteuse du traitement de certains troubles spécifiques du côlon, avant tout fonctionnels.
Resumo:
BACKGROUND: Direct colonic electrical stimulation may prove to be a treatment option for specific motility disorders such as chronic constipation. The aim of this study was to provoke colonic contractions using electrical stimulation delivered from a battery-operated device. METHODS: Electrodes were inserted into the caecal seromuscular layer of eight anaesthetized pigs. Contractions were induced by a neurostimulator (Medtronic 3625). Caecal motility was measured simultaneously by video image analysis, manometry and a technique assessing colonic transit. RESULTS: Caecal contractions were generated using 8-10 V amplitude, 1000 micros pulse width, 120 Hz frequency for 10-30 s, with an intensity of 7-15 mA. The maximal contraction strength was observed after 20-25 s. Electrical stimulation was followed by a relaxation phase of 1.5-2 min during which contractions propagated orally and aborally over at least 10 cm. Spontaneous and stimulated caecal motility values were significantly different for both intraluminal pressure (mean(s.d.) 332(124) and 463(187) mmHg respectively; P < 0.001, 42 experiments) and movement of contents (1.6(0.9) and 3.9(2.8) mm; P < 0.001, 40 experiments). CONCLUSION: Electrical stimulation modulated caecal motility, and provoked localized and propagated colonic contractions.
Resumo:
This report documents work undertaken in the demonstration of a low-cost Automatic Weight and Classification System (AWACS). An AWACS procurement specification and details of the results of the project are also included. The intent of the project is to support and encourage transferring research knowledge to state and local agencies and manufacturers through field demonstrations. Presently available, Weigh-in-Motion and Classification Systems are typically too expensive to permit the wide deployment necessary to obtain representative vehicle data. Piezo electric technology has been used in the United Kingdom and Europe and is believed to be the basic element in a low-cost AWACS. Low-cost systems have been installed at two sites, one in Portland Cement Concrete (PCC) pavement in Iowa and the other in Asphaltic Cement Concrete (ACC) pavement in Minnesota to provide experience with both types of pavement. The systems provide axle weights, gross vehicle weight, axle spacing, vehicle classification, vehicle speed, vehicle count, and time of arrival. In addition, system self-calibration and a method to predict contact tire pressure is included in the system design. The study has shown that in the PCC pavement, the AWACS is capable of meeting the needs of state and federal highway agencies, producing accuracies comparable to many current commercial WIM devices. This is being achieved at a procurement cost of substantially less than currently available equipment. In the ACC pavement the accuracies were less than those observed in the PCC pavement which is concluded to result from a low pavement rigidity at this site. Further work is needed to assess the AWACS performance at a range of sites in ACC pavements.
Resumo:
The objective of this work was to evaluate the effects of temperature (10, 20, 30, 20/10 and 30/10ºC) and period of storage on electrical conductivity (EC) in four seed lots of corn (Zea mays L.), as well as the mineral composition of the soaking solution. EC test determines indirectly the integrity of seed membrane systems, and is used for the assessment of seed vigor, because this test detects the seed deterioration process since its early phase. The research comprised determinations of water content, germination, accelerated aging (AA), cold (CT) and EC vigor tests, and determinations of Ca2+, Mg2+ and K+ release to the solution, after seed soaking of four corn seed lots. The evaluations were performed each four months during a period of 16 months. For statistical analysis, a completely randomized split plot design was used with eight replications. Except for seed lots stored at 10ºC, all vigor evaluations revealed a decline in vigor, but AA and CT showed more sensitiveness to declines of seed physiological quality than EC. Potassium was the main leached ion regardless of the storage temperature.
Resumo:
This tutorial review details some of the recent advances in signal analyses applied to event-related potential (ERP) data. These "electrical neuroimaging" analyses provide reference-independent measurements of response strength and response topography that circumvent statistical and interpretational caveats of canonical ERP analysis methods while also taking advantage of the greater information provided by high-density electrode montages. Electrical neuroimaging can be applied across scales ranging from group-averaged ERPs to single-subject and single-trial datasets. We illustrate these methods with a tutorial dataset and place particular emphasis on their suitability for studies of clinical and/or developmental populations.
Resumo:
Pavements are subjected to different stresses during their design lives. A properly designed pavement will perform adequately during its design life, and the distresses will not exceed the allowable limits; however, there are several factors that can lead to premature pavement failure. One such factor is moisture sensitivity. AASHTO T 283 is the standard test used in the moisture susceptibility evaluation of asphalt mixtures, but the results of the test are not very representative of the expected behavior of asphalt mixtures. The dynamic modulus test measures a fundamental property of the mixture. The results of the dynamic modulus test can be used directly in the Mechanistic-Empirical Pavement Design Guide (MEPDG) and are considered a very good representation of the expected field performance of the mixture. Further research is still needed to study how the dynamic modulus results are affected by moisture. The flow number test was studied in previous research as a candidate test for moisture-susceptibility evaluation, but the results of that research were not favorable. This research has four main objectives. The first objective of this research is to evaluate the usefulness of the dynamic modulus and flow number tests in moisture-susceptibility evaluation. The second objective is to compare the results to those achieved using the AASHTO T 283 test. The third objective is to study the effect of different methods of sample conditioning and testing conditions. The fourth objective of the research is to study the variability in the test results.
Resumo:
The issue of corrosion of winter maintenance equipment is becoming of greater concern because of the increased use of liquid solutions of ice control chemicals, as opposed to their application in solid form. Being in liquid form, the ice control chemicals can more easily penetrate into the nooks and crannies on equipment and avoid being cleansed from the vehicle. Given this enhanced corrosive ability, methods must be found to minimize corrosion. The methods may include coatings, additives, cleansing techniques, other methods, and may also include doing nothing, and accepting a reduced equipment lifetime as a valid (perhaps) trade off with the enhanced benefits of using liquid ice control chemicals. In reality, some combination of these methods may prove to be optimal. Whatever solutions are selected, they must be relatively cheap and durable. The latter point is critical because of the environment in which maintenance trucks operate, in which scrapes, scratches and dents are facts of life. Protection methods that are not robust simply will not work. The purpose of this study is to determine how corrosion occurs on maintenance trucks, to find methods that would minimize the major corrosion mechanisms, and to
Resumo:
The effects of farm equipment on the structural behavior of flexible and rigid pavements were investigated in this study. The project quantified the difference in pavement behavior caused by heavy farm equipment as compared to a typical 5-axle, 80 kip semi-truck. This research was conducted on full scale pavement test sections designed and constructed at the Minnesota Road Research facility (MnROAD). The testing was conducted in the spring and fall seasons to capture responses when the pavement is at its weakest state and when agricultural vehicles operate at a higher frequency, respectively. The flexible pavement sections were heavily instrumented with strain gauges and earth pressure cells to measure essential pavement responses under heavy agricultural vehicles, whereas the rigid pavement sections were instrumented with strain gauges and linear variable differential transducers (LVDTs). The full scale testing data collected in this study were used to validate and calibrate analytical models used to predict relative damage to pavements. The developed procedure uses various inputs (including axle weight, tire footprint, pavement structure, material characteristics, and climatic information) to determine the critical pavement responses (strains and deflections). An analysis was performed to determine the damage caused by various types of vehicles to the roadway when there is a need to move large amounts agricultural product.
Resumo:
The infiltration of river water into aquifers is of high relevance to drinking-water production and is a key driver of biogeochemical processes in the hyporheic and riparian zone, but the distribution and quantification of the infiltrating water are difficult to determine using conventional hydrological methods (e.g., borehole logging and tracer tests). By time-lapse inverting crosshole ERT (electrical resistivity tomography) monitoring data, we imaged groundwater flow patterns driven by river water infiltrating a perialpine gravel aquifer in northeastern Switzerland. This was possible because the electrical resistivity of the infiltrating water changed during rainfall-runoff events. Our time-lapse resistivity models indicated rather complex flow patterns as a result of spatially heterogeneous bank filtration and aquifer heterogeneity. The upper part of the aquifer was most affected by the river infiltrate, and the highest groundwater velocities and possible preferential flow occurred at shallow to intermediate depths. Time series of the reconstructed resistivity models matched groundwater electrical resistivity data recorded on borehole loggers in the upper and middle parts of the aquifer, whereas the resistivity models displayed smaller variations and delayed responses with respect to the logging data. in the lower part. This study demonstrated that crosshole ERT monitoring of natural electrical resistivity variations of river infiltrate could be used to image and quantify 3D bank filtration and aquifer dynamics at a high spatial resolution.
Resumo:
INTRODUCTION: In this study we evaluated the validity of garment-based quadriceps stimulation (GQS) for assessment of muscle inactivation in comparison with femoral nerve stimulation (FNS). METHODS: Inactivation estimates (superimposed doublet torque), self-reported discomfort, and twitch and doublet contractile properties were compared between GQS and FNS in 15 healthy subjects. RESULTS: Superimposed doublet torque was significantly lower for GQS than for FNS at 20% and 40% maximum voluntary contraction (MVC) (P < 0.01), but not at 60%, 80%, and 100% MVC. Discomfort scores were systematically lower for GQS than for FNS (P < 0.05). Resting twitch and doublet peak torque were lower for GQS, and time to peak torque was shorter for GQS than for FNS (P < 0.01). CONCLUSIONS: GQS can be used with confidence for straightforward evaluation of quadriceps muscle inactivation, whereas its validity for assessment of contractile properties remains to be determined. Muscle Nerve 51: 117-124, 2015.
Resumo:
In this work, zinc indium tin oxide layers with different compositions are used as the active layer of thin film transistors. This multicomponent transparent conductive oxide is gaining great interest due to its reduced content of the scarce indium element. Experimental data indicate that the incorporation of zinc promotes the creation of oxygen vacancies. In thin-film transistors this effect leads to a higher threshold voltage values. The field-effect mobility is also strongly degraded, probably due to coulomb scattering by ionized defects. A post deposition annealing in air reduces the density of oxygen vacancies and improves the fieldeffect mobility by orders of magnitude. Finally, the electrical characteristics of the fabricated thin-film transistors have been analyzed to estimate the density of states in the gap of the active layers. These measurements reveal a clear peak located at 0.3 eV from the conduction band edge that could be attributed to oxygen vacancies.
Resumo:
Quantifying the spatial configuration of hydraulic conductivity (K) in heterogeneous geological environments is essential for accurate predictions of contaminant transport, but is difficult because of the inherent limitations in resolution and coverage associated with traditional hydrological measurements. To address this issue, we consider crosshole and surface-based electrical resistivity geophysical measurements, collected in time during a saline tracer experiment. We use a Bayesian Markov-chain-Monte-Carlo (McMC) methodology to jointly invert the dynamic resistivity data, together with borehole tracer concentration data, to generate multiple posterior realizations of K that are consistent with all available information. We do this within a coupled inversion framework, whereby the geophysical and hydrological forward models are linked through an uncertain relationship between electrical resistivity and concentration. To minimize computational expense, a facies-based subsurface parameterization is developed. The Bayesian-McMC methodology allows us to explore the potential benefits of including the geophysical data into the inverse problem by examining their effect on our ability to identify fast flowpaths in the subsurface, and their impact on hydrological prediction uncertainty. Using a complex, geostatistically generated, two-dimensional numerical example representative of a fluvial environment, we demonstrate that flow model calibration is improved and prediction error is decreased when the electrical resistivity data are included. The worth of the geophysical data is found to be greatest for long spatial correlation lengths of subsurface heterogeneity with respect to wellbore separation, where flow and transport are largely controlled by highly connected flowpaths.
Resumo:
CONTEXT: A shortening of the atrial refractory period has been considered as the main mechanism for the increased risk of atrial fibrillation in hyperthyroidism. However, other important factors may be involved. OBJECTIVE: Our objective was to determine the activity of abnormal supraventricular electrical depolarizations in response to elevated thyroid hormones in patients without structural heart disease. PATIENTS AND DESIGN: Twenty-eight patients (25 females, three males, mean age 43+/-11 yr) with newly diagnosed and untreated hyperthyroidism were enrolled in a prospective trial after exclusion of heart disease. Patients were followed up for 16 +/- 6 months and studied at baseline and 6 months after normalization of serum TSH levels. MAIN OUTCOME MEASURES: The incidence of abnormal premature supraventricular depolarizations (SVPD) and the number of episodes of supraventricular tachycardia was defined as primary outcome measurements before the start of the study. In addition, heart rate oscillations (turbulence) after premature depolarizations and heart rate variability were compared at baseline and follow-up. RESULTS: SVPDs decreased from 59 +/- 29 to 21 +/- 8 per 24 h (P = 0.003), very early SVPDs (so called P on T) decreased from 36 +/- 24 to 3 +/- 1 per 24 h (P < 0.0001), respectively, and nonsustained supraventricular tachycardias decreased from 22 +/- 11 to 0.5 +/- 0.2 per 24 h (P = 0.01) after normalization of serum thyrotropin levels. The hyperthyroid phase was characterized by an increased heart rate (93 +/- 14 vs. 79 +/- 8 beats/min, P < 0.0001) and a decreased turbulence slope (3.6 vs. 9.2, P = 0.003), consistent with decreased vagal tone. This was confirmed by a significant decrease of heart rate variability. CONCLUSION: Hyperthyroidism is associated with an increased supraventricular ectopic activity in patients with normal hearts. The activation of these arrhythmogenic foci by elevated thyroid hormones may be an important causal link between hyperthyroidism and atrial fibrillation.
Resumo:
Abstract