907 resultados para EDS analysis
Resumo:
We present a conceptual architecture for a Group Support System (GSS) to facilitate Multi-Organisational Collaborative Groups (MOCGs) initiated by local government and including external organisations of various types. Multi-Organisational Collaborative Groups (MOCGs) consist of individuals from several organisations which have agreed to work together to solve a problem. The expectation is that more can be achieved working in harmony than separately. Work is done interdependently, rather than independently in diverse directions. Local government, faced with solving complex social problems, deploy MOCGs to enable solutions across organisational, functional, professional and juridical boundaries, by involving statutory, voluntary, community, not-for-profit and private organisations. This is not a silver bullet as it introduces new pressures. Each member organisation has its own goals, operating context and particular approaches, which can be expressed as their norms and business processes. Organisations working together must find ways of eliminating differences or mitigating their impact in order to reduce the risks of collaborative inertia and conflict. A GSS is an electronic collaboration system that facilitates group working and can offer assistance to MOCGs. Since many existing GSSs have been primarily developed for single organisation collaborative groups, even though there are some common issues, there are some difficulties peculiar to MOCGs, and others that they experience to a greater extent: a diversity of primary organisational goals among members; different funding models and other pressures; more significant differences in other information systems both technologically and in their use than single organisations; greater variation in acceptable approaches to solve problems. In this paper, we analyse the requirements of MOCGs led by local government agencies, leading to a conceptual architecture for an e-government GSS that captures the relationships between 'goal', 'context', 'norm', and 'business process'. Our models capture the dynamics of the circumstances surrounding each individual representing an organisation in a MOCG along with the dynamics of the MOCG itself as a separate community.
Resumo:
In this paper, we address issues in segmentation Of remotely sensed LIDAR (LIght Detection And Ranging) data. The LIDAR data, which were captured by airborne laser scanner, contain 2.5 dimensional (2.5D) terrain surface height information, e.g. houses, vegetation, flat field, river, basin, etc. Our aim in this paper is to segment ground (flat field)from non-ground (houses and high vegetation) in hilly urban areas. By projecting the 2.5D data onto a surface, we obtain a texture map as a grey-level image. Based on the image, Gabor wavelet filters are applied to generate Gabor wavelet features. These features are then grouped into various windows. Among these windows, a combination of their first and second order of statistics is used as a measure to determine the surface properties. The test results have shown that ground areas can successfully be segmented from LIDAR data. Most buildings and high vegetation can be detected. In addition, Gabor wavelet transform can partially remove hill or slope effects in the original data by tuning Gabor parameters.