922 resultados para Dynamic manufacturing networks
Resumo:
The importance of the changeover process in the manufacturing industry is becoming widely recognised. Changeover is a complete process of changing between the manufacture of one product to manufacture of an alternative product until specified production and quality rates are reached. The initiatives to improve changeover exist in industry, as better changeover process typically contribute to improved quality performance. A high-quality and reliable changeover process can be achieved through implementation of continuous or radical improvements. This research examines the changeover process of Saudi Arabian manufacturing firms because Saudi Arabia’s government is focused on the expansion of GDP and increasing the number of export manufacturing firms. Furthermore, it is encouraging foreign manufacturing firms to invest within Saudi Arabia. These initiatives, therefore, require that Saudi manufacturing businesses develop the changeover practice in order to compete in the market and achieve the government’s objectives. Therefore, the aim of this research is to discover the current status of changeover process implementation in Saudi Arabian manufacturing businesses. To achieve this aim, the main objective of this research is to develop a conceptual model to understand and examine the effectiveness of the changeover process within Saudi Arabian manufacturing firms, facilitating identification of those activities that affect the reliability and high-quality of the process. In order to provide a comprehensive understanding of this area, this research first explores the concept of quality management and its relationship to firm performance and the performance of manufacturing changeover. An extensive body of literature was reviewed on the subject of lean manufacturing and changeover practice. A research conceptual model was identified based on this review, and focus was on providing high-quality and reliable manufacturing changeover processes during set-up in a dynamic environment. Exploratory research was conducted in sample Saudi manufacturing firms to understand the features of the changeover process within the manufacturing sector, and as a basis for modifying the proposed conceptual model. Qualitative research was employed in the study with semi-structured interviews, direct observations and documentation in order to understand the real situation such as actual daily practice and current status of changeover process in the field. The research instrument, the Changeover Effectiveness Assessment Tool (CEAT) was developed to evaluate changeover practices. A pilot study was conducted by examining the CEAT, proposed for the main research. Consequently, the conceptual model was modified and CEAT was improved in response to the pilot study findings. Case studies have been conducted within eight Saudi manufacturing businesses. These case studies assessed the implementation of manufacturing changeover practice in the lighting and medical products sectors. These two sectors were selected based on their operation strategy which was batch production as well as the fact that they fulfilled the research sampling strategy. The outcomes of the research improved the conceptual model, ultimately to facilitate the firms’ adoption and rapid implementation of a high-quality and reliability changeover during the set-up process. The main finding of this research is that Quality’s factors were considering the lowest levels comparing to the other factors which are People, Process and Infrastructure. This research contributes to enable Saudi businesses to implement the changeover process by adopting the conceptual model. In addition, the guidelines for facilitating implementation were provided in this thesis. Therefore, this research provides insight to enable the Saudi manufacturing industry to be more responsive to rapidly changing customer demands.
Resumo:
The purpose of this study was to design a preventive scheme using directional antennas to improve the performance of mobile ad hoc networks. In this dissertation, a novel Directionality based Preventive Link Maintenance (DPLM) Scheme is proposed to characterize the performance gain [JaY06a, JaY06b, JCY06] by extending the life of link. In order to maintain the link and take preventive action, signal strength of data packets is measured. Moreover, location information or angle of arrival information is collected during communication and saved in the table. When measured signal strength is below orientation threshold , an orientation warning is generated towards the previous hop node. Once orientation warning is received by previous hop (adjacent) node, it verifies the correctness of orientation warning with few hello pings and initiates high quality directional link (a link above the threshold) and immediately switches to it, avoiding a link break altogether. The location information is utilized to create a directional link by orienting neighboring nodes antennas towards each other. We call this operation an orientation handoff, which is similar to soft-handoff in cellular networks. ^ Signal strength is the indicating factor, which represents the health of the link and helps to predict the link failure. In other words, link breakage happens due to node movement and subsequently reducing signal strength of receiving packets. DPLM scheme helps ad hoc networks to avoid or postpone costly operation of route rediscovery in on-demand routing protocols by taking above-mentioned preventive action. ^ This dissertation advocates close but simple collaboration between the routing, medium access control and physical layers. In order to extend the link, the Dynamic Source Routing (DSR) and IEEE 802.11 MAC protocols were modified to use the ability of directional antennas to transmit over longer distance. A directional antenna module is implemented in OPNET simulator with two separate modes of operations: omnidirectional and directional. The antenna module has been incorporated in wireless node model and simulations are performed to characterize the performance improvement of mobile ad hoc networks. Extensive simulations have shown that without affecting the behavior of the routing protocol noticeably, aggregate throughput, packet delivery ratio, end-to-end delay (latency), routing overhead, number of data packets dropped, and number of path breaks are improved considerably. We have done the analysis of the results in different scenarios to evaluate that the use of directional antennas with proposed DPLM scheme has been found promising to improve the performance of mobile ad hoc networks. ^
Resumo:
In recent years, urban vehicular ad hoc networks (VANETs) are gaining importance for inter-vehicle communication, because they allow for the local communication between vehicles without any infrastructure, configuration effort, and without expensive cellular networks. But such architecture may increase the complexity of routing since there is no central control system in urban VANETs. Therefore, a challenging research task is to improve urban VANETs' routing efficiency. ^ Hence, in this dissertation we propose two location-based routing protocols and a location management protocol to facilitate location-based routing in urban VANETs. The Multi-hop Routing Protocol (MURU) is proposed to make use of predicted mobility and geometry map in urban VANETs to estimate a path's life time and set up robust end-to-end routing paths. The Light-weight Routing Protocol (LIRU) is proposed to take advantage of the node diversity under dynamic channel condition to exploit opportunistic forwarding to achieve efficient data delivery. A scalable location management protocol (MALM) is also proposed to support location-based routing protocols in urban VANETs. MALM uses high mobility in VANETs to help disseminate vehicles' historical location information, and a vehicle is able to implement Kalman-filter based predicted to predict another vehicle's current location based on its historical location information. ^
Resumo:
With the advent of peer to peer networks, and more importantly sensor networks, the desire to extract useful information from continuous and unbounded streams of data has become more prominent. For example, in tele-health applications, sensor based data streaming systems are used to continuously and accurately monitor Alzheimer's patients and their surrounding environment. Typically, the requirements of such applications necessitate the cleaning and filtering of continuous, corrupted and incomplete data streams gathered wirelessly in dynamically varying conditions. Yet, existing data stream cleaning and filtering schemes are incapable of capturing the dynamics of the environment while simultaneously suppressing the losses and corruption introduced by uncertain environmental, hardware, and network conditions. Consequently, existing data cleaning and filtering paradigms are being challenged. This dissertation develops novel schemes for cleaning data streams received from a wireless sensor network operating under non-linear and dynamically varying conditions. The study establishes a paradigm for validating spatio-temporal associations among data sources to enhance data cleaning. To simplify the complexity of the validation process, the developed solution maps the requirements of the application on a geometrical space and identifies the potential sensor nodes of interest. Additionally, this dissertation models a wireless sensor network data reduction system by ascertaining that segregating data adaptation and prediction processes will augment the data reduction rates. The schemes presented in this study are evaluated using simulation and information theory concepts. The results demonstrate that dynamic conditions of the environment are better managed when validation is used for data cleaning. They also show that when a fast convergent adaptation process is deployed, data reduction rates are significantly improved. Targeted applications of the developed methodology include machine health monitoring, tele-health, environment and habitat monitoring, intermodal transportation and homeland security.
Resumo:
A wireless mesh network is a mesh network implemented over a wireless network system such as wireless LANs. Wireless Mesh Networks(WMNs) are promising for numerous applications such as broadband home networking, enterprise networking, transportation systems, health and medical systems, security surveillance systems, etc. Therefore, it has received considerable attention from both industrial and academic researchers. This dissertation explores schemes for resource management and optimization in WMNs by means of network routing and network coding.^ In this dissertation, we propose three optimization schemes. (1) First, a triple-tier optimization scheme is proposed for load balancing objective. The first tier mechanism achieves long-term routing optimization, and the second tier mechanism, using the optimization results obtained from the first tier mechanism, performs the short-term adaptation to deal with the impact of dynamic channel conditions. A greedy sub-channel allocation algorithm is developed as the third tier optimization scheme to further reduce the congestion level in the network. We conduct thorough theoretical analysis to show the correctness of our design and give the properties of our scheme. (2) Then, a Relay-Aided Network Coding scheme called RANC is proposed to improve the performance gain of network coding by exploiting the physical layer multi-rate capability in WMNs. We conduct rigorous analysis to find the design principles and study the tradeoff in the performance gain of RANC. Based on the analytical results, we provide a practical solution by decomposing the original design problem into two sub-problems, flow partition problem and scheduling problem. (3) Lastly, a joint optimization scheme of the routing in the network layer and network coding-aware scheduling in the MAC layer is introduced. We formulate the network optimization problem and exploit the structure of the problem via dual decomposition. We find that the original problem is composed of two problems, routing problem in the network layer and scheduling problem in the MAC layer. These two sub-problems are coupled through the link capacities. We solve the routing problem by two different adaptive routing algorithms. We then provide a distributed coding-aware scheduling algorithm. According to corresponding experiment results, the proposed schemes can significantly improve network performance.^
Resumo:
This dissertation aims to improve the performance of existing assignment-based dynamic origin-destination (O-D) matrix estimation models to successfully apply Intelligent Transportation Systems (ITS) strategies for the purposes of traffic congestion relief and dynamic traffic assignment (DTA) in transportation network modeling. The methodology framework has two advantages over the existing assignment-based dynamic O-D matrix estimation models. First, it combines an initial O-D estimation model into the estimation process to provide a high confidence level of initial input for the dynamic O-D estimation model, which has the potential to improve the final estimation results and reduce the associated computation time. Second, the proposed methodology framework can automatically convert traffic volume deviation to traffic density deviation in the objective function under congested traffic conditions. Traffic density is a better indicator for traffic demand than traffic volume under congested traffic condition, thus the conversion can contribute to improving the estimation performance. The proposed method indicates a better performance than a typical assignment-based estimation model (Zhou et al., 2003) in several case studies. In the case study for I-95 in Miami-Dade County, Florida, the proposed method produces a good result in seven iterations, with a root mean square percentage error (RMSPE) of 0.010 for traffic volume and a RMSPE of 0.283 for speed. In contrast, Zhou's model requires 50 iterations to obtain a RMSPE of 0.023 for volume and a RMSPE of 0.285 for speed. In the case study for Jacksonville, Florida, the proposed method reaches a convergent solution in 16 iterations with a RMSPE of 0.045 for volume and a RMSPE of 0.110 for speed, while Zhou's model needs 10 iterations to obtain the best solution, with a RMSPE of 0.168 for volume and a RMSPE of 0.179 for speed. The successful application of the proposed methodology framework to real road networks demonstrates its ability to provide results both with satisfactory accuracy and within a reasonable time, thus establishing its potential usefulness to support dynamic traffic assignment modeling, ITS systems, and other strategies.
Resumo:
The convergence of data, audio and video on IP networks is changing the way individuals, groups and organizations communicate. This diversity of communication media presents opportunities for creating synergistic collaborative communications. This form of collaborative communication is however not without its challenges. The increasing number of communication service providers coupled with a combinatorial mix of offered services, varying Quality-of-Service and oscillating pricing of services increases the complexity for the user to manage and maintain ‘always best’ priced or performance services. Consumers have to manually manage and adapt their communication in line with differences in services across devices, networks and media while ensuring that the usage remain consistent with their intended goals. This dissertation proposes a novel user-centric approach to address this problem. The proposed approach aims to reduce the aforementioned complexity to the user by (1) providing high-level abstractions and a policy based methodology for automated selection of the communication services guided by high-level user policies and (2) providing services through the seamless integration of multiple communication service providers and providing an extensible framework to support the integration of multiple communication service providers. The approach was implemented in the Communication Virtual Machine (CVM), a model-driven technology for realizing communication applications. The CVM includes the Network Communication Broker, the layer responsible for providing a network-independent API to the upper layers of CVM. The initial prototype for the NCB supported only a single communication framework which limited the number, quality and types of services available. Experimental evaluation of the approach show the additional overhead of the approach is minimal compared to the individual communication services frameworks. Additionally the automated approach proposed out performed the individual communication services frameworks for cross framework switching.
Resumo:
In recent years, there has been an enormous growth of location-aware devices, such as GPS embedded cell phones, mobile sensors and radio-frequency identification tags. The age of combining sensing, processing and communication in one device, gives rise to a vast number of applications leading to endless possibilities and a realization of mobile Wireless Sensor Network (mWSN) applications. As computing, sensing and communication become more ubiquitous, trajectory privacy becomes a critical piece of information and an important factor for commercial success. While on the move, sensor nodes continuously transmit data streams of sensed values and spatiotemporal information, known as ``trajectory information". If adversaries can intercept this information, they can monitor the trajectory path and capture the location of the source node. ^ This research stems from the recognition that the wide applicability of mWSNs will remain elusive unless a trajectory privacy preservation mechanism is developed. The outcome seeks to lay a firm foundation in the field of trajectory privacy preservation in mWSNs against external and internal trajectory privacy attacks. First, to prevent external attacks, we particularly investigated a context-based trajectory privacy-aware routing protocol to prevent the eavesdropping attack. Traditional shortest-path oriented routing algorithms give adversaries the possibility to locate the target node in a certain area. We designed the novel privacy-aware routing phase and utilized the trajectory dissimilarity between mobile nodes to mislead adversaries about the location where the message started its journey. Second, to detect internal attacks, we developed a software-based attestation solution to detect compromised nodes. We created the dynamic attestation node chain among neighboring nodes to examine the memory checksum of suspicious nodes. The computation time for memory traversal had been improved compared to the previous work. Finally, we revisited the trust issue in trajectory privacy preservation mechanism designs. We used Bayesian game theory to model and analyze cooperative, selfish and malicious nodes' behaviors in trajectory privacy preservation activities.^
Resumo:
The promise of Wireless Sensor Networks (WSNs) is the autonomous collaboration of a collection of sensors to accomplish some specific goals which a single sensor cannot offer. Basically, sensor networking serves a range of applications by providing the raw data as fundamentals for further analyses and actions. The imprecision of the collected data could tremendously mislead the decision-making process of sensor-based applications, resulting in an ineffectiveness or failure of the application objectives. Due to inherent WSN characteristics normally spoiling the raw sensor readings, many research efforts attempt to improve the accuracy of the corrupted or "dirty" sensor data. The dirty data need to be cleaned or corrected. However, the developed data cleaning solutions restrict themselves to the scope of static WSNs where deployed sensors would rarely move during the operation. Nowadays, many emerging applications relying on WSNs need the sensor mobility to enhance the application efficiency and usage flexibility. The location of deployed sensors needs to be dynamic. Also, each sensor would independently function and contribute its resources. Sensors equipped with vehicles for monitoring the traffic condition could be depicted as one of the prospective examples. The sensor mobility causes a transient in network topology and correlation among sensor streams. Based on static relationships among sensors, the existing methods for cleaning sensor data in static WSNs are invalid in such mobile scenarios. Therefore, a solution of data cleaning that considers the sensor movements is actively needed. This dissertation aims to improve the quality of sensor data by considering the consequences of various trajectory relationships of autonomous mobile sensors in the system. First of all, we address the dynamic network topology due to sensor mobility. The concept of virtual sensor is presented and used for spatio-temporal selection of neighboring sensors to help in cleaning sensor data streams. This method is one of the first methods to clean data in mobile sensor environments. We also study the mobility pattern of moving sensors relative to boundaries of sub-areas of interest. We developed a belief-based analysis to determine the reliable sets of neighboring sensors to improve the cleaning performance, especially when node density is relatively low. Finally, we design a novel sketch-based technique to clean data from internal sensors where spatio-temporal relationships among sensors cannot lead to the data correlations among sensor streams.
Resumo:
With the advent of peer to peer networks, and more importantly sensor networks, the desire to extract useful information from continuous and unbounded streams of data has become more prominent. For example, in tele-health applications, sensor based data streaming systems are used to continuously and accurately monitor Alzheimer's patients and their surrounding environment. Typically, the requirements of such applications necessitate the cleaning and filtering of continuous, corrupted and incomplete data streams gathered wirelessly in dynamically varying conditions. Yet, existing data stream cleaning and filtering schemes are incapable of capturing the dynamics of the environment while simultaneously suppressing the losses and corruption introduced by uncertain environmental, hardware, and network conditions. Consequently, existing data cleaning and filtering paradigms are being challenged. This dissertation develops novel schemes for cleaning data streams received from a wireless sensor network operating under non-linear and dynamically varying conditions. The study establishes a paradigm for validating spatio-temporal associations among data sources to enhance data cleaning. To simplify the complexity of the validation process, the developed solution maps the requirements of the application on a geometrical space and identifies the potential sensor nodes of interest. Additionally, this dissertation models a wireless sensor network data reduction system by ascertaining that segregating data adaptation and prediction processes will augment the data reduction rates. The schemes presented in this study are evaluated using simulation and information theory concepts. The results demonstrate that dynamic conditions of the environment are better managed when validation is used for data cleaning. They also show that when a fast convergent adaptation process is deployed, data reduction rates are significantly improved. Targeted applications of the developed methodology include machine health monitoring, tele-health, environment and habitat monitoring, intermodal transportation and homeland security.
Resumo:
The effective control of production activities in dynamic job shop with predetermined resource allocation for all the jobs entering the system is a unique manufacturing environment, which exists in the manufacturing industry. In this thesis a framework for an Internet based real time shop floor control system for such a dynamic job shop environment is introduced. The system aims to maintain the schedule feasibility of all the jobs entering the manufacturing system under any circumstance. The system is capable of deciding how often the manufacturing activities should be monitored to check for control decisions that need to be taken on the shop floor. The system will provide the decision maker real time notification to enable him to generate feasible alternate solutions in case a disturbance occurs on the shop floor. The control system is also capable of providing the customer with real time access to the status of the jobs on the shop floor. The communication between the controller, the user and the customer is through web based user friendly GUI. The proposed control system architecture and the interface for the communication system have been designed, developed and implemented.
Resumo:
People go through their life making all kinds of decisions, and some of these decisions affect their demand for transportation, for example, their choices of where to live and where to work, how and when to travel and which route to take. Transport related choices are typically time dependent and characterized by large number of alternatives that can be spatially correlated. This thesis deals with models that can be used to analyze and predict discrete choices in large-scale networks. The proposed models and methods are highly relevant for, but not limited to, transport applications. We model decisions as sequences of choices within the dynamic discrete choice framework, also known as parametric Markov decision processes. Such models are known to be difficult to estimate and to apply to make predictions because dynamic programming problems need to be solved in order to compute choice probabilities. In this thesis we show that it is possible to explore the network structure and the flexibility of dynamic programming so that the dynamic discrete choice modeling approach is not only useful to model time dependent choices, but also makes it easier to model large-scale static choices. The thesis consists of seven articles containing a number of models and methods for estimating, applying and testing large-scale discrete choice models. In the following we group the contributions under three themes: route choice modeling, large-scale multivariate extreme value (MEV) model estimation and nonlinear optimization algorithms. Five articles are related to route choice modeling. We propose different dynamic discrete choice models that allow paths to be correlated based on the MEV and mixed logit models. The resulting route choice models become expensive to estimate and we deal with this challenge by proposing innovative methods that allow to reduce the estimation cost. For example, we propose a decomposition method that not only opens up for possibility of mixing, but also speeds up the estimation for simple logit models, which has implications also for traffic simulation. Moreover, we compare the utility maximization and regret minimization decision rules, and we propose a misspecification test for logit-based route choice models. The second theme is related to the estimation of static discrete choice models with large choice sets. We establish that a class of MEV models can be reformulated as dynamic discrete choice models on the networks of correlation structures. These dynamic models can then be estimated quickly using dynamic programming techniques and an efficient nonlinear optimization algorithm. Finally, the third theme focuses on structured quasi-Newton techniques for estimating discrete choice models by maximum likelihood. We examine and adapt switching methods that can be easily integrated into usual optimization algorithms (line search and trust region) to accelerate the estimation process. The proposed dynamic discrete choice models and estimation methods can be used in various discrete choice applications. In the area of big data analytics, models that can deal with large choice sets and sequential choices are important. Our research can therefore be of interest in various demand analysis applications (predictive analytics) or can be integrated with optimization models (prescriptive analytics). Furthermore, our studies indicate the potential of dynamic programming techniques in this context, even for static models, which opens up a variety of future research directions.
Resumo:
With applications ranging from aerospace to biomedicine, additive manufacturing (AM) has been revolutionizing the manufacturing industry. The ability of additive techniques, such as selective laser melting (SLM), to create fully functional, geometrically complex, and unique parts out of high strength materials is of great interest. Unfortunately, despite numerous advantages afforded by this technology, its widespread adoption is hindered by a lack of on-line, real time feedback control and quality assurance techniques. In this thesis, inline coherent imaging (ICI), a broadband, spatially coherent imaging technique, is used to observe the SLM process in 15 - 45 $\mu m$ 316L stainless steel. Imaging of both single and multilayer builds is performed at a rate of 200 $kHz$, with a resolution of tens of microns, and a high dynamic range rendering it impervious to blinding from the process beam. This allows imaging before, during, and after laser processing to observe changes in the morphology and stability of the melt. Galvanometer-based scanning of the imaging beam relative to the process beam during the creation of single tracks is used to gain a unique perspective of the SLM process that has been so far unobservable by other monitoring techniques. Single track processing is also used to investigate the possibility of a preliminary feedback control parameter based on the process beam power, through imaging with both coaxial and 100 $\mu m$ offset alignment with respect to the process beam. The 100 $\mu m$ offset improved imaging by increasing the number of bright A-lines (i.e. with signal greater than the 10 $dB$ noise floor) by 300\%. The overlap between adjacent tracks in a single layer is imaged to detect characteristic fault signatures. Full multilayer builds are carried out and the resultant ICI images are used to detect defects in the finished part and improve upon the initial design of the build system. Damage to the recoater blade is assessed using powder layer scans acquired during a 3D build. The ability of ICI to monitor SLM processes at such high rates with high resolution offers extraordinary potential for future advances in on-line feedback control of additive manufacturing.
Resumo:
The advances in low power micro-processors, wireless networks and embedded systems have raised the need to utilize the significant resources of mobile devices. These devices for example, smart phones, tablets, laptops, wearables, and sensors are gaining enormous processing power, storage capacity and wireless bandwidth. In addition, the advancement in wireless mobile technology has created a new communication paradigm via which a wireless network can be created without any priori infrastructure called mobile ad hoc network (MANET). While progress is being made towards improving the efficiencies of mobile devices and reliability of wireless mobile networks, the mobile technology is continuously facing the challenges of un-predictable disconnections, dynamic mobility and the heterogeneity of routing protocols. Hence, the traditional wired, wireless routing protocols are not suitable for MANET due to its unique dynamic ad hoc nature. Due to the reason, the research community has developed and is busy developing protocols for routing in MANET to cope with the challenges of MANET. However, there are no single generic ad hoc routing protocols available so far, which can address all the basic challenges of MANET as mentioned before. Thus this diverse range of ever growing routing protocols has created barriers for mobile nodes of different MANET taxonomies to intercommunicate and hence wasting a huge amount of valuable resources. To provide interaction between heterogeneous MANETs, the routing protocols require conversion of packets, meta-model and their behavioural capabilities. Here, the fundamental challenge is to understand the packet level message format, meta-model and behaviour of different routing protocols, which are significantly different for different MANET Taxonomies. To overcome the above mentioned issues, this thesis proposes an Interoperable Framework for heterogeneous MANETs called IF-MANET. The framework hides the complexities of heterogeneous routing protocols and provides a homogeneous layer for seamless communication between these routing protocols. The framework creates a unique Ontology for MANET routing protocols and a Message Translator to semantically compare the packets and generates the missing fields using the rules defined in the Ontology. Hence, the translation between an existing as well as newly arriving routing protocols will be achieved dynamically and on-the-fly. To discover a route for the delivery of packets across heterogeneous MANET taxonomies, the IF-MANET creates a special Gateway node to provide cluster based inter-domain routing. The IF-MANET framework can be used to develop different middleware applications. For example: Mobile grid computing that could potentially utilise huge amounts of aggregated data collected from heterogeneous mobile devices. Disaster & crises management applications can be created to provide on-the-fly infrastructure-less emergency communication across organisations by utilising different MANET taxonomies.
Resumo:
With the emerging prevalence of smart phones and 4G LTE networks, the demand for faster-better-cheaper mobile services anytime and anywhere is ever growing. The Dynamic Network Optimization (DNO) concept emerged as a solution that optimally and continuously tunes the network settings, in response to varying network conditions and subscriber needs. Yet, the DNO realization is still at infancy, largely hindered by the bottleneck of the lengthy optimization runtime. This paper presents the design and prototype of a novel cloud based parallel solution that further enhances the scalability of our prior work on various parallel solutions that accelerate network optimization algorithms. The solution aims to satisfy the high performance required by DNO, preliminarily on a sub-hourly basis. The paper subsequently visualizes a design and a full cycle of a DNO system. A set of potential solutions to large network and real-time DNO are also proposed. Overall, this work creates a breakthrough towards the realization of DNO.