963 resultados para Dwarf mutant


Relevância:

20.00% 20.00%

Publicador:

Resumo:

σ32, the product of the rpoH gene in Escherichia coli, provides promoter specificity by interacting with core RNAP. Amino acid sequence alignment of σ32 with other sigma factors in the σ70 family has revealed regions of sequence homology. We have investigated the function of the most highly conserved region, 2.2, using purified products of various rpoH alleles. Core RNAP binding analysis by glycerol gradient sedimentation has revealed reduced core RNAP affinity for one of the mutant σ32 proteins, Q80R. This reduced core interaction is exacerbated in the presence of σ70, which competes with σ32 for binding of core RNAP. When a different but more conserved amino acid was introduced at this position by site-directed mutagenesis (Q80N), this mutant sigma factor still displayed a significant reduction in its core RNAP affinity. Based on these results, we conclude that at least one specific amino acid in region 2.2 is involved in core RNAP interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two mouse insulin genes, Ins1 and Ins2, were disrupted and lacZ was inserted at the Ins2 locus by gene targeting. Double nullizygous insulin-deficient pups were growth-retarded. They did not show any glycosuria at birth but soon after suckling developed diabetes mellitus with ketoacidosis and liver steatosis and died within 48 h. Interestingly, insulin deficiency did not preclude pancreas organogenesis and the appearance of the various cell types of the endocrine pancreas. The presence of lacZ expressing β cells and glucagon-positive α cells was demonstrated by cytochemistry and immunocytochemistry. Reverse transcription-coupled PCR analysis showed that somatostatin and pancreatic polypeptide mRNAs were present, although at reduced levels, accounting for the presence also of δ and pancreatic polypeptide cells, respectively. Morphometric analysis revealed enlarged islets of Langherans in the pancreas from insulin-deficient pups, suggesting that insulin might function as a negative regulator of islet cell growth. Whether insulin controls the growth of specific islet cell types and the molecular basis for this action remain to be elucidated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have characterized a nontoxic mutant of cholera toxin (CT) as a mucosal adjuvant in mice. The mutant CT was made by substitution of serine with phenylalanine at position 61 of the A subunit (S61F), which resulted in loss of ADP ribosyltransferase activity and toxicity. Mice were intranasally immunized with ovalbumin, tetanus toxoid, or influenza virus either alone or together with mutant CT S61F, native CT, or recombinant CT-B. Mice immunized with these proteins plus S61F showed high serum titers of protein-specific IgG and IgA antibodies that were comparable to those induced by native CT. Further, high protein-specific IgA antibody responses were observed in nasal and vaginal washes, saliva, and fecal extracts as well as increased numbers of IgG and IgA antibody forming cells in cervical lymph nodes and lung tissues of mice intranasally immunized with these proteins and S61F or native CT, but not with recombinant CT-B or protein alone. Both S61F and native CT enhanced the induction of ovalbumin-specific CD4+ T cells in lung and splenic tissues, and these T cells produced a Th2-type cytokine pattern of interleukin 4 (IL-4), IL-5, IL-6, and IL-10 as determined by analysis of secreted proteins and by quantitation of cytokine-specific mRNA. These results have shown that mutant CT S61F is an effective mucosal adjuvant when administrated intranasally and induces mucosal and systemic antibody responses which are mediated by CD4+ Th2-type cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thymocytes and thymic dendritic cell (DC) lineages develop simultaneously and may originate from a common intrathymic progenitor. Mice deficient for two growth factor receptor molecules [c-kit and the common cytokine receptor γ chain (γc)] lack all thymocytes including T cell progenitors. Despite this lack of pro-T cells, thymic DC compartments were identified in c-kit−γc− mice. Thus, c-kit- and γc-mediated signals are not essential to generate thymic DCs. In addition, pro-T cells do not appear to be obligatory progenitors of thymic DCs, because DC development is dissociated from the generation of thymocytes in these mice. Thymic DCs in c-kit−γc− mice are phenotypically and functionally normal. In contrast to wild-type mice, however, thymic DCs in c-kit−γc− and, notably, in RAG-2-deficient mice are CD8αneg/low, indicating that CD8α expression on thymic DCs is not independent of thymocytes developing beyond the “RAG-block.”

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biotin-binding site of streptavidin was modified to alter its ligand-binding specificity. In natural streptavidin, the side chains of N23 and S27 make two of the three hydrogen bonds with the ureido oxygen of biotin. These two residues were mutated to severely weaken biotin binding while attempting to maintain the affinity for two biotin analogs, 2-iminobiotin and diaminobiotin. Redesigning of the biotin-binding site used the difference in local electrostatic charge distribution between biotin and these biotin analogs. Free energy calculations predicted that the introduction of a negative charge at the position of S27 plus the mutation N23A should disrupt two of the three hydrogen bonds between natural streptavidin and the ureido oxygen of biotin. In contrast, the imino hydrogen of 2-iminobiotin should form a hydrogen bond with the side chain of an acidic amino acid at position 27. This should reduce the biotin-binding affinity by approximately eight orders of magnitude, while leaving the affinities for these biotin analogs virtually unaffected. In good agreement with these predictions, a streptavidin mutant with the N23A and S27D substitutions binds 2-iminobiotin with an affinity (Ka) of 1 × 106 M−1, two orders of magnitude higher than that for biotin (1 × 104 M−1). In contrast, the binding affinity of this streptavidin mutant for diaminobiotin (2.7 × 104 M−1) was lower than predicted (2.9 × 105 M−1), suggesting the position of the diaminobiotin in the biotin-binding site was not accurately determined by modeling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutant, but not wild-type p53 binds with high affinity to a variety of MAR-DNA elements (MARs), suggesting that MAR-binding of mutant p53 relates to the dominant-oncogenic activities proposed for mutant p53. MARs recognized by mutant p53 share AT richness and contain variations of an AATATATTT “DNA-unwinding motif,” which enhances the structural dynamics of chromatin and promotes regional DNA base-unpairing. Mutant p53 specifically interacted with MAR-derived oligonucleotides carrying such unwinding motifs, catalyzing DNA strand separation when this motif was located within a structurally labile sequence environment. Addition of GC-clamps to the respective MAR-oligonucleotides or introducing mutations into the unwinding motif strongly reduced DNA strand separation, but supported the formation of tight complexes between mutant p53 and such oligonucleotides. We conclude that the specific interaction of mutant p53 with regions of MAR-DNA with a high potential for base-unpairing provides the basis for the high-affinity binding of mutant p53 to MAR-DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some 50% of human cancers are associated with mutations in the core domain of the tumor suppressor p53. Many mutations are thought just to destabilize the protein. To assess this and the possibility of rescue, we have set up a system to analyze the stability of the core domain and its mutants. The use of differential scanning calorimetry or spectroscopy to measure its melting temperature leads to irreversible denaturation and aggregation and so is useful as only a qualitative guide to stability. There are excellent two-state denaturation curves on the addition of urea that may be analyzed quantitatively. One Zn2+ ion remains tightly bound in the holo-form of p53 throughout the denaturation curve. The stability of wild type is 6.0 kcal (1 kcal = 4.18 kJ)/mol at 25°C and 9.8 kcal/mol at 10°C. The oncogenic mutants R175H, C242S, R248Q, R249S, and R273H are destabilized by 3.0, 2.9, 1.9, 1.9, and 0.4 kcal/mol, respectively. Under certain denaturing conditions, the wild-type domain forms an aggregate that is relatively highly fluorescent at 340 nm on excitation at 280 nm. The destabilized mutants give this fluorescence under milder denaturation conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Potassium (K+) nutrition and salt tolerance are key factors controlling plant productivity. However, the mechanisms by which plants regulate K+ nutrition and salt tolerance are poorly understood. We report here the identification of an Arabidopsis thaliana mutant, sos3 (salt-overly-sensitive 3), which is hypersensitive to Na+ and Li+ stresses. The mutation is recessive and is in a nuclear gene that maps to chromosome V. The sos3 mutation also renders the plant unable to grow on low K+. Surprisingly, increased extracellular Ca2+ suppresses the growth defect of sos3 plants on low K+ or 50 mM NaCl. In contrast, high concentrations of external Ca2+ do not rescue the growth of the salt-hypersensitive sos1 mutant on low K+ or 50 mM NaCl. Under NaCl stress, sos3 seedlings accumulated more Na+ and less K+ than the wild type. Increased external Ca2+ improved K+/Na+ selectivity of both sos3 and wild-type plants. However, this Ca2+ effect in sos3 is more than twice as much as that in the wild type. In addition to defining the first plant mutant with an altered calcium response, these results demonstrate that the SOS3 locus is essential for K+ nutrition, K+/Na+ selectivity, and salt tolerance in higher plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dephosphorylation of the natriuretic peptide receptor-A (NPR-A) is hypothesized to mediate its desensitization in response to atrial natriuretic peptide (ANP) binding. Recently, we identified six phosphorylation sites within the kinase homology domain of NPR-A and determined that the conversion of these residues to alanine abolished the ability of the receptor to be phosphorylated or to be activated by ANP and ATP. In an attempt to generate a form of NPR-A that mimics a fully phosphorylated receptor but that is resistant to dephosphorylation, we engineered a receptor variant (NPR-A-6E) containing glutamate substitutions at all six phosphorylation sites. Consistent with the known ability of negatively charged glutamate residues to substitute functionally, in some cases, for phosphorylated residues, we found that NPR-A-6E was activated 10-fold by ANP and ATP. As determined by guanylyl cyclase assays, the hormone-stimulated activity of the wild-type receptor declined over time in membrane preparations in vitro, and this loss was blocked by the serine/threonine protein phosphatase inhibitor microcystin. In contrast, the activity of NPR-A-6E was more linear with time and was unaffected by microcystin. The nonhydrolyzable ATP analogue adenosine 5′-(β,γ-imino)-triphosphate was half as effective as ATP in stimulating the wild-type receptor but was equally as potent in stimulating NPR-A-6E, suggesting that ATP is required to keep the wild-type but not 6E variant phosphorylated. Finally, the desensitization of NPR-A-6E in whole cells was markedly blunted compared with that of the wild-type receptor, consistent with its inability to shed the negative charge from its kinase homology domain via dephosphorylation. These data provide the first direct test of the requirement for dephosphorylation in guanylyl cyclase desensitization and they indicate that it is an essential component of this process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rab2 immunolocalizes to pre-Golgi intermediates (vesicular-tubular clusters [VTCs]) that are the first site of segregation of anterograde- and retrograde-transported proteins and a major peripheral site for COPI recruitment. Our previous work showed that Rab2 Q65L (equivalent to Ras Q61L) inhibited endoplasmic reticulum (ER)-to-Golgi transport in vivo. In this study, the biochemical properties of Rab2 Q65L were analyzed. The mutant protein binds GDP and GTP and has a low GTP hydrolysis rate that suggests that Rab2 Q65L is predominantly in the GTP-bound–activated form. The purified protein arrests vesicular stomatitis virus glycoprotein transport from VTCs in an assay that reconstitutes ER-to-Golgi traffic. A quantitative binding assay was used to measure membrane binding of β-COP when incubated with the mutant. Unlike Rab2 that stimulates recruitment, Rab2 Q65L showed a dose-dependent decrease in membrane-associated β-COP when incubated with rapidly sedimenting membranes (ER, pre-Golgi, and Golgi). The mutant protein does not interfere with β-COP binding but stimulates the release of slowly sedimenting vesicles containing Rab2, β-COP, and p53/gp58 but lacking anterograde grade-directed cargo. To complement the biochemical results, we observed in a morphological assay that Rab2 Q65L caused vesiculation of VTCs that accumulated at 15°C. These data suggest that the Rab2 protein plays a role in the low-temperature–sensitive step that regulates membrane flow from VTCs to the Golgi complex and back to the ER.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Drosophila melanogaster HSC3 and HSC4 genes encode Hsc70 proteins homologous to the mammalian endoplasmic reticulum (ER) protein BiP and the cytoplasmic clathrin uncoating ATPase, respectively. These proteins possess ATP binding/hydrolysis activities that mediate their ability to aid in protein folding by coordinating the sequential binding and release of misfolded proteins. To investigate the roles of HSC3 (Hsc3p) and HSC4 (Hsc4p) proteins during development, GAL4-targeted gene expression was used to analyze the effects of producing dominant negatively acting Hsc3p (D231S, K97S) and Hsc4p (D206S, K71S) proteins, containing single amino acid substitutions in their ATP-binding domains, in specific tissues of Drosophila throughout development. We show that the production of each mutant protein results in lethality over a range of developmental stages, depending on the levels of protein produced and which tissues are targeted. We demonstrate that the functions of both Hsc3p and Hsc4p are required for proper tissue establishment and maintenance. Production of mutant Hsc4p, but not Hsc3p, results in induction of the stress-inducible Hsp70 at normal temperatures. Evidence is presented that lethality is caused by tissue-specific defects that result from a global accumulation of misfolded protein caused by lack of functional Hsc70. We show that both mutant Hsc3ps are defective in ATP-induced substrate release, although Hsc3p(D231S) does undergo an ATP-induced conformational change. We believe that the amino acid substitutions in Hsc3p interfere with the structural coupling of ATP binding to substrate release, and this defect is the basis for the mutant proteins’ dominant negative effects in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many effectors of microtubule assembly in vitro enhance the polymerization of subunits. However, several Saccharomyces cerevisiae genes that affect cellular microtubule-dependent processes appear to act at other steps in assembly and to affect polymerization only indirectly. Here we use a mutant α-tubulin to probe cellular regulation of microtubule assembly. tub1-724 mutant cells arrest at low temperature with no assembled microtubules. The results of several assays reported here demonstrate that the heterodimer formed between Tub1-724p and β-tubulin is less stable than wild-type heterodimer. The unstable heterodimer explains several conditional phenotypes conferred by the mutation. These include the lethality of tub1-724 haploid cells when the β-tubulin–binding protein Rbl2p is either overexpressed or absent. It also explains why the TUB1/tub1-724 heterozygotes are cold sensitive for growth and why overexpression of Rbl2p rescues that conditional lethality. Both haploid and heterozygous tub1-724 cells are inviable when another microtubule effector, PAC2, is overexpressed. These effects are explained by the ability of Pac2p to bind α-tubulin, a complex we demonstrate directly. The results suggest that tubulin-binding proteins can participate in equilibria between the heterodimer and its components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We showed previously that substitution of the first residue of the influenza hemagglutinin (HA) fusion peptide Gly1 with Glu abolishes fusion activity. In the present study we asked whether this striking phenotype was due to the charge or side-chain volume of the substituted Glu. To do this we generated and characterized six mutants with substitutions at position 1: Gly1 to Ala, Ser, Val, Glu, Gln, or Lys. We found the following. All mutants were expressed at the cell surface, could be cleaved from the precursor (HA0) to the fusion permissive form (HA1-S-S-HA2), bound antibodies against the major antigenic site, bound red blood cells, and changed conformation at low pH. Only Gly, Ala, and Ser supported lipid mixing during fusion with red blood cells. Only Gly and Ala supported content mixing. Ser HA, therefore, displayed a hemifusion phenotype. The hemifusion phenotype of Ser HA was confirmed by electrophysiological studies. Our findings indicate that the first residue of the HA fusion peptide must be small (e.g., Gly, Ala, or Ser) to promote lipid mixing and must be small and apolar (e.g., Gly or Ala) to support both lipid and content mixing. The finding that Val HA displays no fusion activity underscores the idea that hydrophobicity is not the sole factor dictating fusion peptide function. The surprising finding that Ser HA displays hemifusion suggests that the HA ectodomain functions not only in the first stage of fusion, lipid mixing, but also, either directly or indirectly, in the second stage of fusion, content mixing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficient activation of p90rsk by MAP kinase requires their interaction through a docking site located at the C-terminal end of p90rsk. The MAP kinase p42mpk1 can associate with p90rsk in G2-arrested but not in mature Xenopus oocytes. In contrast, an N-terminally truncated p90rsk mutant named D2 constitutively interacts with p42mpk1. In this report we show that expression of D2 inhibits Xenopus oocyte maturation. The inhibition requires the p42mpk1 docking site. D2 expression uncouples the activation of p42mpk1 and p34cdc2/cyclin B in response to progesterone but does not prevent signaling through p90rsk. Instead, D2 interferes with a p42mpk1-triggered pathway, which regulates the phosphorylation and activation of Plx1, a potential activator of the Cdc25 phosphatase. This new pathway that links the activation of p42mpk1 and Plx1 during oocyte maturation is independent of p34cdc2/cyclin B activity but requires protein synthesis. Using D2, we also provide evidence that the sustained activation of p42mpk1 can trigger nuclear migration in oocytes. Our results indicate that D2 is a useful tool to study MAP kinase function(s) during oocyte maturation. Truncated substrates such as D2, which constitutively interact with MAP kinases, may also be helpful to study signal transduction by MAP kinases in other cellular processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitogen-activated protein (MAP) kinases are pivotal components of eukaryotic signaling cascades. Phosphorylation of tyrosine and threonine residues activates MAP kinases, but either dual-specificity or monospecificity phosphatases can inactivate them. The Candida albicans CPP1 gene, a structural member of the VH1 family of dual- specificity phosphatases, was previously cloned by its ability to block the pheromone response MAP kinase cascade in Saccharomyces cerevisiae. Cpp1p inactivated mammalian MAP kinases in vitro and acted as a tyrosine-specific enzyme. In C. albicans a MAP kinase cascade can trigger the transition from the budding yeast form to a more invasive filamentous form. Disruption of the CPP1 gene in C. albicans derepressed the yeast to hyphal transition at ambient temperatures, on solid surfaces. A hyphal growth rate defect under physiological conditions in vitro was also observed and could explain a reduction in virulence associated with reduced fungal burden in the kidneys seen in a systemic mouse model. A hyper-hyphal pathway may thus have some detrimental effects on C. albicans cells. Disruption of the MAP kinase homologue CEK1 suppressed the morphological effects of the CPP1 disruption in C. albicans. The results presented here demonstrate the biological importance of a tyrosine phosphatase in cell-fate decisions and virulence in C. albicans.