944 resultados para Durability.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper reviews methods, materials, equipment and results to date of sprinkle treatment within the state. The Iowa Department of Transportation formerly the Iowa State Highway Commission, made its first attempts at sprinkle treatment of fresh asphalt concrete in 1974. Increased emphasis in mix design of asphalt mixes and aggregate selection of durable non-polishing materials has generated costly restrictions on the use of local materials. During the summer of 1975, a dual spinner, tail-gate spreader was mounted on a standard departmental dump truck to attempt additional sprinkle treatment on a section of Iowa 7 west of Ft. Dodge. The dump truck equipment was marginally satisfactory, but results of increased surface skid texture and durability were well demonstrated. On 1976 a new, current order dump truck was modified with an auxiliary transmission and a set of slick surfaced tires, and dual spinner spreader was mounted to again attempt surface sprinkle treatment, which was conducted in 1977.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Consolid System by American Consolid Inc. is a three product system that, according to product literature, "enables any soil, found anywhere, to be upgraded to achieve better characteristics necessary in improving road life and quality". Consolid was evaluated along with mixes of cement-fly ash and hydrated lime on two soils. The soils were an A-2-4(0) with zero plasticity index and an A-7-8(18) with a 31 plasticity index. American Consolid Inc. recommended an application rate of 0.10% Consolid 444 and 1.00% Conservex by dry soil weight. The application rate chosen for cement-fly ash was 5% cement and 15% fly ash and for hydrated lime it was 6.5%. Testing involved triaxial testing of specimens after water soaking, unconfined compressive strength of specimens before and after water soaking, and freeze and thaw testing of specimens after water soaking. All specimens were compacted to standard proctor at optimum moisture. The cement-fly ash treated mixes had the highest strength and durability followed by the hydrated lime treated mixes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currently, hydraulic cement grouts are approved for Iowa Department of Transportation projects on the basis of a pullout test. However, other properties of the grouts should be evaluated. Therefore, this research was initiated to develop criteria to better evaluate hydraulic cement grouts. Fourteen grouts were tested for compressive strength, time of set, durability, consistency and shrinkage. Tested grouts all yielded compressive strengths higher than 3000 psi at 7 days and durability factors were well above 70. Time of set and consistency was adequate. The testing showed most grouts tested shrank, even though tested grouts were labeled non-shrink grouts. For many applications of grouts such as setting in anchor bolts and as a filler, minor shrinkage is not a problem. However, for some critical applications, shrinkage cannot be tolerated. The proposed Instructional Memorandum will identify those grouts which do not excessively shrink or expand in the tests used. Based on test results, criteria for evaluation of hydraulic cement grouts have been recommended. Evaluation consists of tests for compressive strength, time of set, durability, consistency, shrinkage and pullout test.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lime sludge, an inert material mostly composed of calcium carbonate, is the result of softening hard water for distribution as drinking water. A large city such as Des Moines, Iowa, produces about 30,700 tons of lime sludge (dry weight basis) annually (Jones et al., 2005). Eight Iowa cities representing, according to the United States (U.S.) Census Bureau, 23% of the state’s population of 3 million, were surveyed. They estimated that they collectively produce 64,470 tons of lime sludge (dry weight basis) per year, and they currently have 371,800 tons (dry weight basis) stockpiled. Recently, the Iowa Department of Natural Resources directed those cities using lime softening in drinking water treatment to stop digging new lagoons to dispose of lime sludge. Five Iowa cities with stockpiles of lime sludge funded this research. The research goal was to find useful and economical alternatives for the use of lime sludge. Feasibility studies tested the efficacy of using lime sludge in cement production, power plant SOx treatment, dust control on gravel roads, wastewater neutralization, and in-fill materials for road construction. Applications using lime sludge in cement production, power plant SOx treatment, and wastewater neutralization, and as a fill material for road construction showed positive results, but the dust control application did not. Since the fill material application showed the most promise in accomplishing the project’s goal within the time limits of this research project, it was chosen for further investigation. Lime sludge is classified as inorganic silt with low plasticity. Since it only has an unconfined compressive strength of approximately 110 kPa, mixtures with fly ash and cement were developed to obtain higher strengths. When fly ash was added at a rate of 50% of the dry weight of the lime sludge, the unconfined strength increased to 1600 kPa. Further, friction angles and California Bearing Ratios were higher than those published for soils of the same classification. However, the mixtures do not perform well in durability tests. The mixtures tested did not survive 12 cycles of freezing and thawing and wetting and drying without excessive mass and volume loss. Thus, these mixtures must be placed at depths below the freezing line in the soil profile. The results demonstrated that chemically stabilized lime sludge is able to contribute bulk volume to embankments in road construction projects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The strategic plan for bridge engineering issued by AASHTO in 2005 identified extending the service life and optimizing structural systems of bridges in the United States as two grand challenges in bridge engineering, with the objective of producing safer bridges that have a minimum service life of 75 years and reduced maintenance cost. Material deterioration was identified as one of the primary challenges to achieving the objective of extended life. In substructural applications (e.g., deep foundations), construction materials such as timber, steel, and concrete are subjected to deterioration due to environmental impacts. Using innovative and new materials for foundation applications makes the AASHTO objective of 75 years service life achievable. Ultra High Performance Concrete (UHPC) with compressive strength of 180 MPa (26,000 psi) and excellent durability has been used in superstructure applications but not in geotechnical and foundation applications. This study explores the use of precast, prestressed UHPC piles in future foundations of bridges and other structures. An H-shaped UHPC section, which is 10-in. (250-mm) deep with weight similar to that of an HP10×57 steel pile, was designed to improve constructability and reduce cost. In this project, instrumented UHPC piles were cast and laboratory and field tests were conducted. Laboratory tests were used to verify the moment-curvature response of UHPC pile section. In the field, two UHPC piles have been successfully driven in glacial till clay soil and load tested under vertical and lateral loads. This report provides a complete set of results for the field investigation conducted on UHPC H-shaped piles. Test results, durability, drivability, and other material advantages over normal concrete and steel indicate that UHPC piles are a viable alternative to achieve the goals of AASHTO strategic plan.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The production and use of biofuels has increased in the present context of sustainable development. Biofuel production from plant biomass produces not only biofuel or ethanol but also co-products containing lignin, modified lignin, and lignin derivatives. This research investigated the utilization of lignin-containing biofuel co-products (BCPs) in pavement soil stabilization as a new application area. Laboratory tests were conducted to evaluate the performance and the moisture susceptibility of two types of BCP-treated soil samples compared to the performance of untreated and traditional stabilizer-treated (fly ash) soil samples. The two types of BCPs investigated were (1) a liquid type with higher lignin content (co-product A) and (b) a powder type with lower lignin content (co-product B). Various additive combinations (co-product A and fly ash, co-products A and B, etc.) were also evaluated as alternatives to stand-alone co-products. Test results indicate that BCPs are effective in stabilizing the Iowa Class 10 soil classified as CL or A-6(8) and have excellent resistance to moisture degradation. Strengths and moisture resistance in comparison to traditional additives (fly ash) could be obtained through the use of combined additives (co-product A + fly ash; co-product A + co-product B). Utilizing BCPs as a soil stabilizer appears to be one of the many viable answers to the profitability of the bio-based products and the bioenergy business. Future research is needed to evaluate the freeze-thaw durability and for resilient modulus characterization of BCP-modified layers for a variety of pavement subgrade and base soil types. In addition, the long-term performance of these BCPs should be evaluated under actual field conditions and traffic loadings. Innovative uses of BCP in pavement-related applications could not only provide additional revenue streams to improve the economics of biorefineries, but could also serve to establish green road infrastructures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Road dust is caused by wind entraining fine material from the roadway surface and the main source of Iowa road dust is attrition of carbonate rock used as aggregate. The mechanisms of dust suppression can be considered as two processes: increasing particle size of the surface fines by agglomeration and inhibiting degradation of the coarse material. Agglomeration may occur by capillary tension in the pore water, surfactants that increase bonding between clay particles, and cements that bind the mineral matter together. Hygroscopic dust suppressants such as calcium chloride have short durations of effectiveness because capillary tension is the primary agglomeration mechanism. Somewhat more permanent methods of agglomeration result from chemicals that cement smaller particles into a mat or larger particles. The cements include lignosulfonates, resins, and asphalt products. The duration of the cements depend on their solubility and the climate. The only dust palliative that decreases aggregate degradation is shredded shingles that act as cushions between aggregate particles. It is likely that synthetic polymers also provide some protection against coarse aggregate attrition. Calcium chloride and lignosulfonates are widely used in Iowa. Both palliatives have a useful duration of about 6 months. Calcium chloride is effective with surface soils of moderate fine content and plasticity whereas lignin works best with materials that have high fine content and high plasticity indices. Bentonite appears to be effective for up to two years and works well with surface materials having low fines and plasticity and works well with limestone aggregate. Selection of appropriate dust suppressants should be based on characterization of the road surface material. Estimation of dosage rates for potential palliatives can be based on data from this report, from technical reports, information from reliable vendors, or laboratory screening tests. The selection should include economic analysis of construction and maintenance costs. The effectiveness of the treatment should be evaluated by any of the field performance measuring techniques discussed in this report. Novel dust control agents that need research for potential application in Iowa include; acidulated soybean oil (soapstock), soybean oil, ground up asphalt shingles, and foamed asphalt. New laboratory evaluation protocols to screen additives for potential effectiveness and determine dosage are needed. A modification of ASTM D 560 to estimate the freeze-thaw and wet-dry durability of Portland cement stabilized soils would be a starting point for improved laboratory testing of dust palliatives.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soil treated with self-cementing fly ash is increasingly being used in Iowa to stabilize fine-grained pavement subgrades, but without a complete understanding of the short- and long-term behavior. To develop a broader understanding of fly ash engineering properties, mixtures of five different soil types, ranging from ML to CH, and several different fly ash sources (including hydrated and conditioned fly ashes) were evaluated. Results show that soil compaction characteristics, compressive strength, wet/dry durability, freeze/thaw durability, hydration characteristics, rate of strength gain, and plasticity characteristics are all affected by the addition of fly ash. Specifically, Iowa selfcementing fly ashes are effective at stabilizing fine-grained Iowa soils for earthwork and paving operations; fly ash increases compacted dry density and reduces the optimum moisture content; strength gain in soil-fly ash mixtures depends on cure time and temperature, compaction energy, and compaction delay; sulfur contents can form expansive minerals in soil–fly ash mixtures, which severely reduces the long-term strength and durability; fly ash increases the California bearing ratio of fine-grained soil–fly ash effectively dries wet soils and provides an initial rapid strength gain; fly ash decreases swell potential of expansive soils; soil-fly ash mixtures cured below freezing temperatures and then soaked in water are highly susceptible to slaking and strength loss; soil stabilized with fly ash exhibits increased freeze-thaw durability; soil strength can be increased with the addition of hydrated fly ash and conditioned fly ash, but at higher rates and not as effectively as self-cementing fly ash. Based on the results of this study, three proposed specifications were developed for the use of self-cementing fly ash, hydrated fly ash, and conditioned fly ash. The specifications describe laboratory evaluation, field placement, moisture conditioning, compaction, quality control testing procedures, and basis of payment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The early-age thermal development of structural mass concrete elements has a significant impact on the future durability and longevity of the elements. If the heat of hydration is not controlled, the elements may be susceptible to thermal cracking and damage from delayed ettringite formation. In the Phase I study, the research team reviewed published literature and current specifications on mass concrete. In addition, the team observed construction and reviewed thermal data from the westbound (WB) I-80 Missouri River Bridge. Finally, the researchers conducted an initial investigation of the thermal analysis software programs ConcreteWorks and 4C-Temp&Stress. The Phase II study is aimed at developing guidelines for the design and construction of mass concrete placements associated with large bridge foundations. This phase included an additional review of published literature and a more in-depth investigation of current mass concrete specifications. In addition, the mass concrete construction of two bridges, the WB I-80 Missouri River Bridge and the US 34 Missouri River Bridge, was documented. An investigation was conducted of the theory and application of 4C-Temp&Stress. ConcreteWorks and 4C-Temp&Stress were calibrated with thermal data recorded for the WB I-80 Missouri River Bridge and the US 34 Missouri River Bridge. ConcreteWorks and 4C-Temp&Stress were further verified by means of a sensitivity study. Finally, conclusions and recommendations were developed, as included in this report.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Iowa Pore Index (IPI) measures the pore system of carbonate (limestone and dolomite) rocks using pressurized water to infiltrate the pore system. This technique provides quantitative results for the primary and capillary (secondary) pores in carbonate rocks. These results are used in conjunction with chemical and mineralogical test results to calculate a quality number, which is used as a predictor of aggregate performance in Portland cement concrete (PCC) leading to the durability classification of the aggregate. This study had two main objectives: to determine the effect different aggregate size has on IPI test results and to establish the precision of IPI test and test apparatus. It was found that smaller aggregate size fractions could be correlated to the standard 1/2”-3/4” size sample. Generally, a particle size decrease was accompanied by a slight decrease in IPI values. The IPI testing also showed fairly good agreement of the secondary pore index number between the 1/2”-3/4”and the 3/8”-1/2” fraction. The #4-3/8” showed a greater difference of the secondary number from the 1/2”-3/4” fraction. The precision of the IPI test was established as a standard deviation (Sr) of 2.85 (Primary) and 0.87 (Secondary) with a repeatability limit (%r) of 8.5% and 14.9% for the primary and secondary values, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Portland cement pervious concrete (PCPC) is being used more frequently due to its benefits in reducing the quantity of runoff water,improving water quality, enhancing pavement skid resistance during storm events by rapid drainage of water, and reducing pavement noise. In the United States, PCPC typically has high porosity and low strength, which has resulted in the limited use of pervious concrete, especially in hard wet freeze environments (e.g., the Midwestern and Northeastern United States and other parts of the world).Improving the strength and freeze-thaw durability of pervious concrete will allow an increase in its use in these regions. The objective of this research is to develop a PCPC mix that not only has sufficient porosity for stormwater infiltration, but also desirable strength and freeze-thaw durability. In this research, concrete mixes were designed with various sizes and types of aggregates, binder contents, and admixture amounts. The engineering properties of the aggregates were evaluated. Additionally, the porosity, permeability, strength, and freeze-thaw durability of each of these mixes was measured. Results indicate that PCPC made with single-sized aggregate has high permeability but not adequate strength. Adding a small percent of sand to the mix improves its strength and freeze-thaw resistance, but lowers its permeability. Although adding sand and latex improved the strength of the mix when compared with single-sized mixes, the strength of mixes where only sand was added were higher. The freeze-thaw resistance of PCPC mixes with a small percentage of sand also showed 2% mass loss after 300 cycles of freeze-thaw. The preliminary results of the effects of compaction energy on PCPC properties show that compaction energy significantly affects the freeze-thaw durability of PCPC and, to a lesser extent, reduces compressive strength and split strength and increases permeability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mixture materials, mix design, and pavement construction are not isolated steps in the concrete paving process. Each affects the other in ways that determine overall pavement quality and long-term performance. However, equipment and procedures commonly used to test concrete materials and concrete pavements have not changed in decades, leaving gaps in our ability to understand and control the factors that determine concrete durability. The concrete paving community needs tests that will adequately characterize the materials, predict interactions, and monitor the properties of the concrete. The overall objectives of this study are (1) to evaluate conventional and new methods for testing concrete and concrete materials to prevent material and construction problems that could lead to premature concrete pavement distress and (2) to examine and refine a suite of tests that can accurately evaluate concrete pavement properties. The project included three phases. In Phase I, the research team contacted each of 16 participating states to gather information about concrete and concrete material tests. A preliminary suite of tests to ensure long-term pavement performance was developed. The tests were selected to provide useful and easy-to-interpret results that can be performed reasonably and routinely in terms of time, expertise, training, and cost. The tests examine concrete pavement properties in five focal areas critical to the long life and durability of concrete pavements: (1) workability, (2) strength development, (3) air system, (4) permeability, and (5) shrinkage. The tests were relevant at three stages in the concrete paving process: mix design, preconstruction verification, and construction quality control. In Phase II, the research team conducted field testing in each participating state to evaluate the preliminary suite of tests and demonstrate the testing technologies and procedures using local materials. A Mobile Concrete Research Lab was designed and equipped to facilitate the demonstrations. This report documents the results of the 16 state projects. Phase III refined and finalized lab and field tests based on state project test data. The results of the overall project are detailed herein. The final suite of tests is detailed in the accompanying testing guide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over-consolidation is often visible as longitudinal vibrator trails in the surface of concrete pavements constructed using slip-form paving. Concrete research and practice have shown that concrete material selection and mix design can be tailored to provide a good compaction without the need for vibration. However, a challenge in developing self-consolidating concrete for slip-form paving (SF SCC) is that the new SF SCC needs to possess not only excellent self-compactibility and stability before extrusion, but also sufficient “green” strength after extrusion, while the concrete is still in a plastic state. The SF SCC to be developed will not be as fluid as the conventional SCC, but it will (1) be workable enough for machine placement, (2) be self-compacting with minimum segregation, (3) hold shape after extrusion from a paver, and (4) have performance properties (strength and durability) compatible to current pavement concrete. The overall objective of this project is to develop a new type of SCC for slip-form paving to produce more workable concrete and smoother pavements, better consolidation of the plastic concrete, and higher rates of production. Phase I demonstrated the feasibility of designing a new type of SF SCC that can not only self-consolidate, but also have sufficient green strength. In this phase, a good balance between flowability and shape stability was achieved by adopting and modifying the mix design of self-consolidating concrete to provide a high content of fine materials in the fresh concrete. It was shown that both the addition of fine particles and the modification of the type of plasticizer significantly improve fresh concrete flowability. The mixes used in this phase were also found to have very good shape stability in the fresh state. Phase II will focus on developing a SF SCC mix design in the lab and a performing a trial of the SF SCC in the field. Phase III will include field study, performance monitoring, and technology transfer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Embankment subgrade soils in Iowa are generally rated as fair to poor as construction materials. These soils can exhibit low bearing strength, high volumetric instability, and freeze/thaw or wet/dry durability problems. Cement stabilization offers opportunities to improve these soils conditions. The objective of this study was to develop relationships between soil index properties, unconfined compressive strength and cement content. To achieve this objective, a laboratory study was conducted on 28 granular and non-granular materials obtained from 9 active construction sites in Iowa. The materials consisted of glacial till, loess, and alluvium sand. Type I/II portland cement was used for stabilization. Stabilized and unstabilized specimens were prepared using Iowa State University 2 in. by 2 in. compaction apparatus. Specimens were prepared, cured, and tested for unconfined compressive strength (UCS) with and without vacuum saturation. Percent fines content (F200), AASHTO group index (GI), and Atterberg limits were tested before and after stabilization. The results were analyzed using multi-variate statistical analysis to assess influence of the various soil index properties on post-stabilization material properties. Results indicated that F200, liquid limit, plasticity index, and GI of the materials generally decreased with increasing cement content. The UCS of the stabilized specimens increased with increasing cement content, as expected. The average saturated UCS of the unstabilized materials varied between 0 and 57 psi. The average saturated UCS of stabilized materials varied between 44 and 287 psi at 4% cement content, 108 and 528 psi at t 8% cement content, and 162 and 709 psi at 12% cement content. The UCS of the vacuum saturated specimens was on average 1.5 times lower than that of the unsaturated specimens. Multi-variate statistical regression models are provided in this report to predict F200, plasticity index, GI, and UCS after treatment, as a function of cement content and soil index properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Avui en dia es genera un volum increïble de dades de diferents tipus i que provenen de multitud d'orígens. Els sistemes d'emmagatzematge i processament distribuït són els elements tecnològics que fan possible capturar aquest allau de dades i permeten donar-ne un valor a través d'anàlisis diversos. Hadoop, que integra un sistema d'emmagatzematge i processament distribuïts, s'ha convertit en l'estàndard de-facto per a aplicacions que necessiten una gran capacitat d'emmagatzematge, inclús de l'ordre de desenes de PBs. En aquest treball farem un estudi de Hadoop, analitzarem l'eficiència del seu sistema de durabilitat i en proposarem una alternativa.